By Dr. Shelley Adamo, Dalhousie University

Do insects feel pain?  Many of us probably ask ourselves this question.  We swat mosquitoes, step on ants, and spray poison on cockroaches, assuming, or perhaps hoping, that they can’t – but can they?  As someone who studies the physiology behind insect behaviour, I’ve wondered about it myself. Those thoughts motivated me to examine the question from the perspective of evolution, neurobiology and robotics.

Are these crickets angry? In pain from being whipped by antennae? How would we know?

To find out whether insects feel pain, we first need to agree on what pain is.  Pain is a personal subjective experience that includes negative emotions.  Pain is different from nociception, which is the ability to respond to damaging stimuli.  All organisms have nociception.  Even bacteria can move away from harmful environments such as high pH.  But not all animals feel pain.  The question, then, is do insects have subjective experiences such as emotions and the ability to feel pain?

We’ve probably all observed insects struggling in a spider’s web or writhing after being sprayed with insecticide; they look like they might be in pain. Insects can also learn to avoid electric shocks, suggesting that they don’t like being shocked.  However, just as I was appreciating how much some insect behaviour looked like our pain behaviour, I realized that Artificial Intelligence (e.g. robots and virtual characters) can also display similar behaviours (e.g. see (https://www.youtube.com/watch?v=YxyGwH7Ku5Y). Think about how virtual characters can realistically express pain in video games such as “The Last of Us” (e.g. https://www.youtube.com/watch?v=OQWD5W3fpPM). Researchers have developed circuits allowing robots and other AI to simulate emotional states (e.g. ‘joy’, ‘anger’, ‘fear’). These circuits alter how the robot/virtual character responds to its environment (i.e. the same stimulus produces a different response depending on the AI’s ‘emotion’).    However, this does not mean that robots or virtual characters are ‘feeling’ these emotions.  AI shows us that behaviour may not be the best guide to an insect’s internal experience.

Given that behaviour seemed an unreliable guide, I then looked for neurobiological evidence that insects feel pain.  Unfortunately, the insect brain is very different from the human brain.  However, once we understand how our brains perceive pain, we may be able to search for circuits that are functionally similar in insects.  Research in humans suggests that pain perception is created by complex neural networks that link up the necessary brain areas.  These types of networks require massive bidirectional connections across multiple brain regions.  Insect brains also have interconnections across different brain areas.  However, these interconnections are often quite modest.  For example, the mushroom bodies in the insect brain are critical for learning and memory. Although the mushroom bodies contain thousands of neurons, in fruit flies, for example, they have only 21 output neurons.  In humans, our memory area, the hippocampus, has hundreds of thousands of output neurons.  The lack of output neurons in insects limits the ability of the insect brain to sew together the traits that create pain in us (e.g.  sensory information, memory, and emotion).

Finally, I considered the question from an evolutionary perspective.  How likely it is that evolution would select for insects to feel pain?  In evolution, traits evolve if the benefits of a trait outweigh its costs.  Unfortunately, nervous systems are expensive for animals.  Insects have a small, economical, nervous system.  Additional neurons dedicated to an ‘emotional’ neural circuit would be relatively expensive in terms of energetics and resources.  If it is possible to produce the same behaviour without the cost, then evolution will select for the cheaper option. Robots show that there could be cheaper ways.

The subjective experience of pain is unlikely to be an all-or-none phenomenon.  Asking whether insects feel pain forces us to consider what we would accept as a subjective experience of pain.  What if it was devoid of emotional content?  What if cognition is not involved?  If insects have any type of subjective experience of pain, it is likely to be something that will be very different from our pain experience.  It is likely to lack key features such as ‘distress’, ‘sadness’, and other states that require the synthesis of emotion, memory and cognition. In other words, insects are unlikely to feel pain as we understand it.   So – should we still swat mosquitoes?    Probably, but a case can be made that all animals deserve our respect, regardless of their ability to feel pain.

Adamo, S. (2019). Is it pain if it does not hurt? On the unlikelihood of insect pain. The Canadian Entomologist, 1-11. doi:10.4039/tce.2019.49 (Paper made available to read for FREE until Sept. 16, 2019 in cooperation with Cambridge University Press)

by Angela Gradish

A common eastern bumble bee male on a flower. Photo by Brett Forsyth.

There’s been a buzz in the air about bees lately, and for good reason: bees are major pollinators of both wild plants and agricultural crops, and some species are declining because of threats like habitat loss, climate change, and agricultural intensification. Many people assume the honey bee is the top pollinator among bees. But bumble bees, the honey bee’s bigger, hairier, and louder cousins, are just as important for pollination*. (For some plants, bumble bees are even better pollinators than honey bees.) North America is home to 46 bumble bee species that collectively visit hundreds of types of plants. Also, a few bumble bee species are commercially reared and sold to growers to pollinate certain crops, like blueberries and greenhouse tomatoes. Unfortunately, some bumble bee species are declining or endangered, and the status of many other species is unknown. Bumble bees are historically understudied, and so for some areas, there aren’t many bumble bee records (documented sightings of individual bumble bees with associated reference information, like sighting location, date, and species name). Without good records, it’s difficult to know how many individuals of certain bumble bee species there are now and how large their geographic range is, and how their population sizes and ranges may have changed over time. Brett Forsyth, a photographer and naturalist from Guelph, hopes to help address this problem and raise awareness about bumble bees with his new online project, Photographing Bumble Bees for Identification.

A pinned rusty-patched bumble bee, an endangered species in Ontario. Photo by Brett Forsyth.

Originally from British Columbia, Brett became interested in bumble bee conservation when he moved to Ontario. Currently, there are three bumble bees on the Species at Risk in Ontario list: the rusty-patched bumble bee (Bombus affinis, endangered), the gypsy cuckoo bumble bee (Bombus bohemicus, endangered), and the yellow-banded bumble bee (Bombus terricola, special concern). Brett decided to figure out how to photograph these at-risk species, and in the process, he discovered that there are relatively poor records of many Ontario bumble bees, especially in the northern and central areas of the province.

Brett saw a way to improve our knowledge of Ontario bumble bees** via iNaturalist, an existing online citizen science project aimed at documenting and sharing observations of global biodiversity. Users create free profiles and upload photos of their biodiversity finds, where they can then be viewed by other users and identified by experts. iNaturalist educates people about the natural world, but it also can provide scientists with valuable data that can be used to track changes to species’ geographic distributions and population sizes. For those data to be useful, the species in the uploaded photos must be identifiable, which requires high-quality images that contain key body structures needed to identify the organism. But as anyone who’s ever tried will tell you, getting a bumble bee to sit still for a picture is tricky. As a photographer, Brett saw an obvious solution to that problem: simply teach people to take good pictures of bumble bees with their mobile devices, and in turn, get better data on Ontario bumble bees.

Pocket guide to photographing bumble bees by Brett Forsyth.

In a series of videos on the Photographing Bumble Bees website, Brett takes viewers step-by-step through the process of taking pictures of bumble bees and uploading their photos to the Bumble Bees of Ontario project on iNaturalist. He also provides a free, printable pocket guide that outlines the most important tips for photographing bumble bees and gives descriptions of the three at-risk species in Ontario. Brett has four general tips for getting great pictures of bumble bees. First, get as close as you can to the bumble bee. (Don’t be scared of that stinger–bumble bees really aren’t very aggressive!) Second, get separate shots of the bumble bee’s back, side, and face. These areas contain features that are important for identifying bumble bees. Third, slow motion video can be used to get good images of fast-moving insects because it produces a bunch of still images that you can sort through later to find the perfect shot. And fourth, find an app that will allow you to manually focus your phone’s camera.

Brett hopes his project will inspire 250 people to join the Bumble Bees of Ontario project on iNaturalist and generate at least 1,000 new bumble bee records from central and northern Ontario. More generally, he wants to get more people interested in bumble bees and the underappreciated world of insects. So help scientists help bumble bees: Grab your phone, get outside, and start snapping photos.

 

*This article is focused on bumble bees, but there are many other types of bees. In fact, there are around 4000 species of bees in Canada and the US. All of those bee are also very important pollinators, and many of them may also be at risk. (We know even less about other bees than bumble bees.) So please learn about other bees too!

**Maybe you’re not in Ontario, but don’t let that stop you from using these tips to photograph bumble bees in your area. Information on any bumble bee species from anywhere is important!

Today’s Women in Entomology Q&A features Jessica Linton, a terrestrial and wetland biologist with Natural Resource Solutions Inc.


Q: What are you studying or working on right now?

JL: I am the founder and coordinator of the Ontario Butterfly Species at Risk Recovery and Implementation Team, so a large proportion of my time right now is focused on developing and implementing recovery activities for butterfly species at risk in Ontario. This includes coordinating things like finding and applying for funding, permitting,  working with researchers to develop specific research projects, working with land managers to inform habitat restoration and management, and conducting field work. I am currently coordinating the proposed reintroduction of an endangered butterfly (Mottled Duskywing) to Pinery Provincial Park.

 

Q: What led you to your specific field of study or work?

JL: Since childhood, I have always been fascinated by butterfly biology and ecology. A job as an interpreter at the Cambridge Butterfly Conservatory and two undergraduate co-op terms in Costa Rica at a butterfly education centre solidified my career direction for me.

Q: When did you first become interested in science and entomology?

JL: It’s been in my blood for as long as I can remember! I spent a lot of my days as a kid just being outside.

Q: What do you enjoy most about your research or work?

JL: I enjoy the flexibility and diversity that working as a consultant in the private sector affords. I bid on many contracts related to species at risk assessment and recovery planning, and work with academic collaborators on research and monitoring projects.

Q: What are your interests outside of academic life or work?

JL: Butterflies definitely cross over to my personal interests, and I enjoy observing and photographing them in the field. My children and I enjoy spending time outdoors, hiking, etc.

Q: What are your future plans or goals?

JL: To continue to build a tailor-made career that feeds my interests and keeps me engaged in my work. I would like to make a meaningful impact on butterfly species at risk recovery in Canada.

Q: Do you have any advice for young students that may be interested in science and/or entomology?

JL: If the job doesn’t exist, find a way to make it happen! Never underestimate the power of your enthusiasm for what you’re passionate about, and make an effort to network and build connections!

By Staffan Lindgren

Many of us remember our first interaction with the Entomological Society of America (ESA) when we co-hosted a JAM in Montreal. Canadians were generally upset that the meeting was controlled completely by the ESA. Because of this, many ESC members have been skeptical of the upcoming meeting, thinking that it may be a repeat of that experience.

I have been one of a number of ESC and ESBC members who have participated in the organization of this meeting. I am writing this short blog because I want to assure you that the ESA staff has gone out of their way to be inclusive with both ESC and ESBC. They acknowledged from the start the mistakes that were made in 2000, and they have lived up to their promise of better relations this time. We have met on-site in person twice (June 2017 and June 2018) and this year we have had monthly conference calls to make sure that nothing slips through the cracks. ESA staff has obviously handled the administrative duties given their experience and resources, but they have been extremely receptive to our suggestions and requests, and I cannot speak highly enough of all of them. Rosina Romano, Becky Anthony and others have been amazing to work with (I think they are miracle workers), and we can look forward to a great meeting where all three societies will be equal parties.

In these times of political uncertainty and what seems like daily tragedies throughout the world, it is re-assuring to know that our profession of entomology serves as a shining example of how well we can get along when we treat each other with respect and in a spirit of cooperation.

I look forward to seeing you in Vancouver.

Vancouver Convention Centre. Image: https://www.vancouverconventioncentre.com/facility

The Fourteenth Annual Photo Contest to select images for the 2019 covers of The Canadian Entomologist and the Bulletin of the Entomological Society of Canada is underway. The cover images are intended to represent the breadth of entomology covered by the Society’s publications. Insects and non-insects in forestry, urban or agriculture; landscapes, field, laboratory or close-ups; or activities associated with physiology, behaviour, taxonomy or IPM are all desirable. A couple of ‘Featured Insects’ (for the spine and under the title) are also needed. If selected, your photo will grace the cover of both publications for the entire year. In addition, winning photos and a selection of all submitted photos will be shown on the ESC website.

Contest rules:

Photos of insects and other arthropods in all stages, activities, and habitats are accepted. To represent the scope of entomological research, we also encourage photos of field plots, laboratory experiments, insect impacts, research activities, sampling equipment, etc. Photos should, however, have a clear entomological focus.

Digital images must be submitted in unbordered, high-quality JPG format, with the long side (width or height) a minimum of 1500 pixels.

Entrants may submit up to five photographs. A caption must be provided with each photo submitted; photos without captions will not be accepted. Captions should include the locality, subject identification as closely as is known, description of activity if the main subject is other than an insect, and any interesting or relevant information. Captions should be a maximum of 40 words.

The entrant must be a member in good standing of the Entomological Society of Canada. Photos must be taken by the entrant, and the entrant must own the copyright.

The copyright of the photo remains with the entrant, but royalty-free use must be granted to the ESC for inclusion on the cover of one volume (6 issues) of The Canadian Entomologist, one volume (4 issues) of the Bulletin, and on the ESC website.

The judging committee will be chosen by the Chair of the Publications Committee of the ESC and will include a member of the Web Content Committee.

The Photo Contest winners will be announced on the ESC website, and may be announced at the Annual Meeting of the ESC or in the Bulletin. There is no cash award for the winners, but photographers will be acknowledged in each issue the photos are printed.

Submission deadline has been extended until 10 October 2018. Entries should be submitted as an attachment to an email message; the subject line should start with “ESC Photo Contest Submission”. Send the email message to: photocontest@esc-sec.ca.

The Fourteenth Annual Photo Contest to select images for the 2019 covers of The Canadian Entomologist and the Bulletin of the Entomological Society of Canada is underway. The cover images are intended to represent the breadth of entomology covered by the Society’s publications. Insects and non-insects in forestry, urban or agriculture; landscapes, field, laboratory or close-ups; or activities associated with physiology, behaviour, taxonomy or IPM are all desirable. A couple of ‘Featured Insects’ (for the spine and under the title) are also needed. If selected, your photo will grace the cover of both publications for the entire year. In addition, winning photos and a selection of all submitted photos will be shown on the ESC website.

Contest rules:

Photos of insects and other arthropods in all stages, activities, and habitats are accepted. To represent the scope of entomological research, we also encourage photos of field plots, laboratory experiments, insect impacts, research activities, sampling equipment, etc. Photos should, however, have a clear entomological focus.

Digital images must be submitted in unbordered, high-quality JPG format, with the long side (width or height) a minimum of 1500 pixels.

Entrants may submit up to five photographs. A caption must be provided with each photo submitted; photos without captions will not be accepted. Captions should include the locality, subject identification as closely as is known, description of activity if the main subject is other than an insect, and any interesting or relevant information. Captions should be a maximum of 40 words.

The entrant must be a member in good standing of the Entomological Society of Canada. Photos must be taken by the entrant, and the entrant must own the copyright.

The copyright of the photo remains with the entrant, but royalty-free use must be granted to the ESC for inclusion on the cover of one volume (6 issues) of The Canadian Entomologist, one volume (4 issues) of the Bulletin, and on the ESC website.

The judging committee will be chosen by the Chair of the Publications Committee of the ESC and will include a member of the Web Content Committee.

The Photo Contest winners will be announced on the ESC website, and may be announced at the Annual Meeting of the ESC or in the Bulletin. There is no cash award for the winners, but photographers will be acknowledged in each issue the photos are printed.

Submission deadline is 31 August 2018. Entries should be submitted as an attachment to an email message; the subject line should start with “ESC Photo Contest Submission”. Send the email message to: photocontest@esc-sec.ca.

This post is the first in a series featuring ‘cool’ and ‘cruel’ (pest) insects in Canada. If there’s an insect that you’d like to write a post about, please get in touch with us!


by John Acorn

The beautifully camouflaged under surface of a Mourning Cloak butterfly.

How long do butterflies live? For most, the answer is “not very long,” after what may have been many months as an egg, caterpillar, and chrysalis. For the Mourning Cloak (Nymphalis antiopa), however, life as a butterfly can stretch over an entire year. Mourning Cloaks spend the winter in hibernation, under bark for example, and they are often the “first butterfly of spring,” along with their close relatives, the tortoiseshells and commas. Since Mourning Cloaks are widespread in North America and Eurasia, they are probably the most oft-encountered spring butterflies in the north temperate world. After feeding on various trees (elm, willow, and poplar are all acceptable fare) as caterpillars, Mourning Cloak butterflies emerge from their pupae in mid to late summer. They sometimes live as long as twelve months as adults. In springtime, they typically emerge from hibernation before the first flowers are in bloom, and they feed on everything from sap flows to dung to mud, in order to obtain the nutrients necessary for such a long life.

On an older Mourning Cloak, the bright yellow wing edges have faded to pale white, and the maroon of the wings becomes a more generic shade of brown. The wing pattern of Mourning Cloaks has been the inspiration for speculation among entomologists. Most agree that the underside of the wings is camouflaged, looking like a dried leaf, or tree bark. But the upper side has been interpreted as a depiction of a yellow, black, and blue-spotted caterpillar, walking along a brown-maroon surface. Birds might peck at the fake caterpillar, thereby missing the delicate body of the butterfly, and indeed we do find Mourning Cloaks with bird bill marks along the edges of their wings (“cloak and dagger,” one might ask?). On the other hand, Mourning Cloaks are agile fliers, and at least one other insect, the Carolina Locust grasshopper (Dissosteira carolina), appears to mimic the Mourning Cloak, perhaps to convince birds that it is difficult to capture in flight.

A freshly emerged Mourning Cloak with bird bill marks along its wing margin. Wingspan approximately 7 cm.

In any event, the wings of Mourning Cloaks are similar to a traditional style of clothing worn when in mourning, but maroon or purplish mourning dresses with dull yellow trim were a matter of “half mourning” in Victorian England, whereas full mourning clothing was all black. In the UK, this species is known as the Camberwell Beauty, in remembrance of two migrant individuals (yes, this species will sometimes undergo “irruptive” migrations, in years when they are especially common) that made their way from the European mainland to Camberwell, a part of London. In French, the name is Morio, a word that also refers to starlings, birds that share a dark ground colour with yellow accents. As for the scientific name, Nymphalis means “nymph,” and refers to the forest nymphs of Greek mythology, while Antiope was the name of one of the mythical Amazons. You will find, however, that if you Google the word “antiopa,” almost all of the hits will refer to the butterfly, which has now eclipsed its namesake.

Links:

http://www.cbif.gc.ca/eng/species-bank/butterflies-of-canada/mourning-cloak/?id=1370403265696

http://entomology.museums.ualberta.ca/searching_species_details.php?fsn=nymphalis+antiopa&sb=1&r=2&o=1&c=2&s=2652&sn=Nymphalis+antiopa

Photos supplied by John Acorn

This post is the first in a new series featuring interviews with Canadian women working in or studying entomology.


Left: Heather looking through one of their lab’s colony cages, which hold around 200 mosquitoes. Right: Heather blood feeding their lab’s mosquito colony. Since Aedes aegypti are extremely anthropophilic, the colony remains much healthier if fed human blood!

Q: What are you studying or working on right now?

HC: I am currently finishing up my PhD at Simon Fraser University. I use a mixture of molecular biology, bioinformatics and ecology to tease apart virus transmission dynamics in mosquitoes. Specifically, I am attempting to identify, characterize and mimic dengue refractory mechanisms in Aedes aegypti, with the ultimate goal of creating genetically modified mosquitoes to reduce the burden of dengue.

Q: What led you to your specific field of study or work?

Heather solution solving with a good friend, Dr. Ramírez Martínez, from Universidad de Guadalajara.

HC: Growing up, I was curious about medical careers and had (still do!) an extreme interest in and fondness for animals. During that time, I also suffered from an irrational fear of blood (haemophobia), which put a large damper on continuing in a medical field. Sticking with my love for animals, I completed my BSc at the University of Guelph in Zoology and gained indispensable research experience in Dr. Alex Smith’s molecular ecology lab. I took some time off after completing my undergraduate degree and found myself drawn to the field of medical entomology. This led me to my current position at Simon Fraser University under the supervision of Dr. Carl Lowenberger, an entomologist and parasitologist with a keen interest in insect immunity.

Q: When did you first become interested in science and entomology?

HC: As a child I loved collecting insects and keeping them as short-term friends and pets. I loved how interconnected science was with nature and how my curiosity was rewarded and encouraged in science classes. My analytical, detail-oriented mind enjoyed the consistent process by which science was often conducted. Although I knew by the end of high school that I wanted to pursue a career in science, it took me many more years to fully realize my interest and passion for the field of entomology.

Q: What do you enjoy most about your research or work?

HC: I love the multidisciplinary nature of my work, the international collaborations it has spawned, and its larger connectivity to the public.

First meet and greet with the lab mascot, Acorn, Heather’s dapple wiener dog.

Q: What are your interests outside of academic life or work?

HC: I’m a sports enthusiast, both watching (I’m an obsessive Detroit Red Wings fan) and playing (ice hockey, tennis, and soccer). I love being in nature in any form possible – walking, hiking, camping, lounging etc. I also enjoy training my wiener dog, Acorn; listening to rap and hip-hop music; and drinking all the craft beers Vancouver has to offer.

Q: What are your future plans or goals?

HC: I would love to continue arbovirus genomics research in an academic environment and learn more about computer science and bioinformatics. I would also love to build and live in my own portable tiny house.

Q: Do you have any advice for young students that may be interested in science and/or entomology?

HC: Never stop exploring, reading, and asking questions. Join clubs and forums that interest you, and reach out to people who are doing things you think are cool and interesting. Keep an open mind, and take some time to get to know the insects around you.

A rare sighting of a formal mosquito.

 

All photos supplied by Heather Coatsworth.

 

By Dr. Laurel Haavik, US Forest Service

Exotic species that establish, spread, and cause substantial damage are demonized as foreign invaders that charge with menacing force across the landscape. Rightly so; those pests threaten to displace or eliminate native species and alter ecosystem functions. Chestnut blight, emerald ash borer, and hemlock woolly adelgid are all excellent examples. What about invaders that aren’t so destructive? Or, at least don’t seem to be at the moment? At what point do we stop monitoring a seemingly innocuous invasive species, especially one that has proved itself a serious pest elsewhere? To make this decision, it’s helpful to know how much the species has affected its new habitat, and whether this impact already has or is likely to change over time. That is exactly what we set out to do with the European woodwasp, Sirex noctilio, in Ontario.

Nearly a decade after the woodwasp was first found in a trap near the Finger Lakes in New York (and then a year later across Lake Ontario in Sandbanks Provincial Park), it still hadn’t killed pines in noticeable numbers, either in the US or Canada. Native to Europe and Asia, this woodwasp has been introduced to several countries in the Southern Hemisphere, where it has been a serious pest in forests planted with exotic pines. By contrast, in North America, it seems that only the weakest trees, those that are already stressed by something else, are killed by the woodwasp. Would forests with many weakened trees allow populations of the woodwasp to build up enough that they could then kill healthy trees in well-maintained forests? Could we find any evidence that this had already happened or would likely happen in the future?

Our goal was to measure the impact the woodwasp has had in Ontario, and whether that has changed over time, by closely examining the same trees in pine forests every year. First, we had to find sites where the woodwasp could be found, which wasn’t every pine forest, and where landowners would allow us to work. We were not interested in sites that were well-managed, because research had already confirmed that the woodwasp was not present in those forests. We used records of positive woodwasp captures from the Ontario Ministry of Natural Resources trap survey as a guide. We visited 50 potential sites, and eventually selected eight for close scrutiny in our long-term study. These sites were areas where there was likely to be intense competition among trees for resources, with plenty of stressed trees for the woodwasp.

The European woodwasp was probably absent from a well-managed red pine forest (left), but likely to be found in an un-managed scots pine forest (right).

We visited all eight sites every fall from 2012 to 2016, after woodwasps had the opportunity to attack trees. Adult woodwasps mate and lay eggs, attacking trees in the process, in mid-summer. Attack was visible as distinctive resin beads scattered over the trunk. We recorded which trees had been attacked, and later (usually the following year) killed by the woodwasp.

The woodwasp population was considerable at some of our sites, having killed about one-third of the trees within five years. Though at other sites, the population was much smaller, having killed only a small percentage of trees. We’re not exactly sure what caused this variability. It’s possible that the woodwasp arrived at some of our sites years before it arrived at others, and the most vulnerable trees were long dead at the sites it invaded earlier. We have no record of time since woodwasp invasion at any of our sites. It’s also possible that local environmental conditions, which we did not measure, could in some way have affected tree resistance or the woodwasp population.

Most curious, though, was that over the five years many trees attacked by the woodwasp did not die – around 50 to 80%. At least half of these trees were attacked again and again in successive years. We had captured an interesting part of the woodwasp’s ecology, its way of essentially priming trees to become better habitat for its young. When laying eggs, female woodwasps also inject a self-made toxic venom along with a symbiotic fungus into the tree, to help kill it. If the tree is sufficiently resistant to attack, the female may not lay eggs, only the fungus and venom. The fungus and venom then work in concert to weaken (prime) the tree for re-attack – and hopefully successful colonization – in subsequent years.

Female woodwasps sometimes die while laying eggs. Survival of the fittest?

Two-thirds of trees that were attacked by the woodwasp at some point in our study (one or more times) did not die, which shows that most trees selected by the woodwasp as suitable habitat are at the moment resistant to its advances. This also shows, along with the variability in woodwasp impact among sites, that this invader is active in the forest. Should environmental conditions change (say, if a drought occurs), woodwasp populations could quickly rise to outbreak levels, which could kill large numbers of healthy pines. This has happened in other places.

Long-term study of these sites, and hopefully others, is needed so that we can be aware of changes that arise in woodwasp impact. This will allow us to be proactive about what steps to take to manage this invader, should it become a problem. It will also help us better understand and predict what causes exotic species to vacillate on the spectrum between aggressive invader and innocuous resident.

Want to read more? Check out the original article published in The Canadian Entomologist, which is freely available for reading & download until May 14, 2018.

Haavik, L.J., Dodds, K.J. & Allison, J.D. (2018) Sirex noctilio (Hymenoptera: Siricidae) in Ontario (Canada) pine forests: observations over five years. The Canadian Entomologist, 1–14. doi: 10.4039/tce.2018.18

By Paul Manning, Post-doctoral Researcher, Dalhousie University

Sometimes when you’re least expecting it you can find yourself presented with the adventure of a lifetime. This recently was the case for me. My adventure took me to the United Kingdom, from September 2013 to August 2016, where I completed my DPhil in Zoology at the University of Oxford.

I didn’t have any long-standing plan to attend the University of Oxford. While finishing my undergraduate degree at the Faculty of Agriculture at Dalhousie University (Truro, Nova Scotia), I decided to apply for a Rhodes scholarship on a bit of a whim. The application was daunting but nonetheless, I managed to put something together and received word that I was a regional finalist. Roughly a week before my final interview, I scanned the University of Oxford – Department of Zoology website and came across the name Owen Lewis. I read through a couple of his papers and sent him a quick e-mail explaining my situation. I received a near-immediate response. Owen enthusiastically wished me the best of luck with my interview and agreed to act as my supervisor should I receive funding. Through a combination of luck, privilege and merit I found myself presented with the opportunity to study at the University of Oxford. I submitted my application to the university a week later. Opting to spend three years being supervised by a stranger based on a single e-mail exchange is not something I would advise to others, but it is exactly what I chose to do. Fortunately, I landed in an incredibly supportive and inclusive research group – and Owen’s first exchange perfectly predicted his supervisory style: helpful, available, and incredibly kind.  

I fell in immediate love with the city of Oxford soon after my arrival. The first thing you might notice about the city is the architecture: medieval walls, ivory towers, and ancient gates seem to appear around every corner. The second thing you might notice is all the bikes – they easily outnumber the cars on the road. The squealing of rusty brakes and pinging of bells is the soundtrack of a morning commute. The third thing you might notice is the gigantic slugs and snails that appear at night – that was my experience at least.

Looking West down High Street Oxford from the top of the Magdalen Tower (L). A delightful garden snail (Limax flavus) that would greet me at the entrance to my flat (M). A delightfully plump slug (Cornu aspersum) with a pound coin for scale (R).

My DPhil research explored the importance of insect biodiversity in perturbed environments using dung beetles as a model system. I did a fair amount of my fieldwork in Southwest Wales, where I was introduced to my co-supervisor Sarah Beynon. Sarah had recently completed her DPhil with Owen as a supervisor and was in the process of setting up “Dr Beynon’s Bug Farm”, which is probably best described as a mixture between a research centre, tropical insect zoo, and working farm. It also is home to Grub Kitchen, UK’s first restaurant with edible insects on the menu.  I spent my first summer living and researching on-site, while the start-up was in its initial stages. It’s a beautiful place – in the early spring the farm is blanketed with yellow iris, red campion, and various orchid species. It was a short bike ride to the coast which I frequented to enjoy steep paths, white sands, and impressive waves.

One of the things that I truly loved about the United Kingdom was the widespread appreciation and knowledge of natural history. The entomology and ecology circles that I ran in certainly would have amplified this signal, but it seemed to run deep in society-at-large. When a server interrupts your book-in-face breakfast to offer her insights about myxomatosis, a viral disease of rabbits, you might just be in the United Kingdom.

A late afternoon rainbow spotted at the Bug Farm (L). Some red campion (Silene dioica) blooming near St. David’s, Pembrokeshire UK (M). Blue skies and strong current on the Ramsey Sound (R).

Some of my favourite memories from my time abroad were natural history outings. Richard Comont, a DPhil student in our research group took me out in the winter of 2014 to see the impressive minotaur dung beetle. We arrived at a local park in the pitch black of night, armed with a couple flashlights. Richard, who bears a certain resemblance to Hagrid (the brawny groundskeeper for Hogwarts School of Witchcraft & Wizardry), also carried a pooter, umbrella, and beating stick. We found the minotaur beetles, they were certainly impressive, but perhaps more memorable was a vivid image of a grinning Richard whaling on a bit of gorse with a broom stick, in the pitch black of the woods.

Another dung beetle memory involves Darren Mann, Head of the Life Collections at the Oxford University Museum of Natural History. Darren invited me out for a day of dung beetle recording as part of a Scarabaeoidea recording effort known charmingly as Team DUMP. We left at six in the morning, drove two-and-a-half hours to rural Wales, and sifted through animal dung on sand dunes until it was so dark that we couldn’t see our hands in front of us. Darren found one species he expected was locally extinct – upon realizing what he found, he gave a fantastic howl of excitement. I’d expect there are few people who are more enthusiastic and knowledgeable about insects than is Darren Mann. If you ever get the chance, make sure to ask him about cockroaches sometime.

A third dung beetle memory is a day I spent collecting with Sarah and her partner Andy. We were getting ready to run a few experiments, and set-up a dung beetle demonstration at a tradeshow. Of course, the powers that be sent along torrential rain. To this day, I don’t think there is a more miserable feeling than kneeling in prickly shrubs, soaked to the bone, sifting through sheep dung. Nonetheless, that’s what we did for hours and hours. Upon returning to the vehicle, I cleaned up and towelled off only to have a bird defecate directly onto my head and shoulder. There couldn’t have been a more fitting end to the day.

An impressive Minotaur beetle (Typhaeus typhoeus) in Shotover Country Park, Oxfordshire (L). A vial of dung beetles containing 104 Onthophagus joannae removed from a single pile of dog dung (Photo by Darren Mann) (M). A collection of beautiful Geotrupid beetles found on Ramsey Island (St. David’s, Pembrokeshire) (R).

While my experience in Oxford was overwhelmingly positive, it did not come without its challenges. The biggest challenge I encountered was dealing with low points caused by an all-encompassing imposter syndrome. The ease and speed at which my colleagues could process and synthesize information was nothing short of intimidating.  Meanwhile, I had trouble getting my first few experiments off the ground; while simultaneously everyone around me seemed to be successfully completing ground-breaking research. I felt slow, unaccomplished, and lazy.  I tried to compensate by putting in additional time: arriving earlier, staying later, and working on weekends – but this just left me feeling burnt-out. Plenty of exercise, structuring my work days, limiting social media, and hours of conversation with my partner, friends, family, colleagues, and supervisors helped me get back on my feet.

I’ve been home in Canada since the summer of 2016, working as a post-doc and a sessional lecturer. I think often and fondly about my time spent abroad in the United Kingdom and would highly recommend it as a study destination. While competitive, there are many different funding sources that Canadian students can access, including the Commonwealth Scholarships, NSERC – Michael Smith Foreign Supplement, Rhodes Scholarships, as well as numerous other international scholarships offered at the institutional level. Living in a foreign country provides you with a fresh outlook and opens your world to a range of new experiences, ideas, and perspectives. If international study is compatible with your other commitments, mull it over a little, and think about giving it a shot – becoming an international student might be just the adventure you’ve been looking for.

Are you a Canadian resident spending time abroad to conduct entomological research, or are you coming to Canada for the opportunity to study? If you’d like to share your story and experiences as part of the Foreign Perspectives series, please get in touch with us by email.