, ,

When Adventure Comes Calling ~ Foreign Perspectives

By Paul Manning, Post-doctoral Researcher, Dalhousie University

Sometimes when you’re least expecting it you can find yourself presented with the adventure of a lifetime. This recently was the case for me. My adventure took me to the United Kingdom, from September 2013 to August 2016, where I completed my DPhil in Zoology at the University of Oxford.

I didn’t have any long-standing plan to attend the University of Oxford. While finishing my undergraduate degree at the Faculty of Agriculture at Dalhousie University (Truro, Nova Scotia), I decided to apply for a Rhodes scholarship on a bit of a whim. The application was daunting but nonetheless, I managed to put something together and received word that I was a regional finalist. Roughly a week before my final interview, I scanned the University of Oxford – Department of Zoology website and came across the name Owen Lewis. I read through a couple of his papers and sent him a quick e-mail explaining my situation. I received a near-immediate response. Owen enthusiastically wished me the best of luck with my interview and agreed to act as my supervisor should I receive funding. Through a combination of luck, privilege and merit I found myself presented with the opportunity to study at the University of Oxford. I submitted my application to the university a week later. Opting to spend three years being supervised by a stranger based on a single e-mail exchange is not something I would advise to others, but it is exactly what I chose to do. Fortunately, I landed in an incredibly supportive and inclusive research group – and Owen’s first exchange perfectly predicted his supervisory style: helpful, available, and incredibly kind.  

I fell in immediate love with the city of Oxford soon after my arrival. The first thing you might notice about the city is the architecture: medieval walls, ivory towers, and ancient gates seem to appear around every corner. The second thing you might notice is all the bikes – they easily outnumber the cars on the road. The squealing of rusty brakes and pinging of bells is the soundtrack of a morning commute. The third thing you might notice is the gigantic slugs and snails that appear at night – that was my experience at least.

Looking West down High Street Oxford from the top of the Magdalen Tower (L). A delightful garden snail (Limax flavus) that would greet me at the entrance to my flat (M). A delightfully plump slug (Cornu aspersum) with a pound coin for scale (R).

My DPhil research explored the importance of insect biodiversity in perturbed environments using dung beetles as a model system. I did a fair amount of my fieldwork in Southwest Wales, where I was introduced to my co-supervisor Sarah Beynon. Sarah had recently completed her DPhil with Owen as a supervisor and was in the process of setting up “Dr Beynon’s Bug Farm”, which is probably best described as a mixture between a research centre, tropical insect zoo, and working farm. It also is home to Grub Kitchen, UK’s first restaurant with edible insects on the menu.  I spent my first summer living and researching on-site, while the start-up was in its initial stages. It’s a beautiful place – in the early spring the farm is blanketed with yellow iris, red campion, and various orchid species. It was a short bike ride to the coast which I frequented to enjoy steep paths, white sands, and impressive waves.

One of the things that I truly loved about the United Kingdom was the widespread appreciation and knowledge of natural history. The entomology and ecology circles that I ran in certainly would have amplified this signal, but it seemed to run deep in society-at-large. When a server interrupts your book-in-face breakfast to offer her insights about myxomatosis, a viral disease of rabbits, you might just be in the United Kingdom.

A late afternoon rainbow spotted at the Bug Farm (L). Some red campion (Silene dioica) blooming near St. David’s, Pembrokeshire UK (M). Blue skies and strong current on the Ramsey Sound (R).

Some of my favourite memories from my time abroad were natural history outings. Richard Comont, a DPhil student in our research group took me out in the winter of 2014 to see the impressive minotaur dung beetle. We arrived at a local park in the pitch black of night, armed with a couple flashlights. Richard, who bears a certain resemblance to Hagrid (the brawny groundskeeper for Hogwarts School of Witchcraft & Wizardry), also carried a pooter, umbrella, and beating stick. We found the minotaur beetles, they were certainly impressive, but perhaps more memorable was a vivid image of a grinning Richard whaling on a bit of gorse with a broom stick, in the pitch black of the woods.

Another dung beetle memory involves Darren Mann, Head of the Life Collections at the Oxford University Museum of Natural History. Darren invited me out for a day of dung beetle recording as part of a Scarabaeoidea recording effort known charmingly as Team DUMP. We left at six in the morning, drove two-and-a-half hours to rural Wales, and sifted through animal dung on sand dunes until it was so dark that we couldn’t see our hands in front of us. Darren found one species he expected was locally extinct – upon realizing what he found, he gave a fantastic howl of excitement. I’d expect there are few people who are more enthusiastic and knowledgeable about insects than is Darren Mann. If you ever get the chance, make sure to ask him about cockroaches sometime.

A third dung beetle memory is a day I spent collecting with Sarah and her partner Andy. We were getting ready to run a few experiments, and set-up a dung beetle demonstration at a tradeshow. Of course, the powers that be sent along torrential rain. To this day, I don’t think there is a more miserable feeling than kneeling in prickly shrubs, soaked to the bone, sifting through sheep dung. Nonetheless, that’s what we did for hours and hours. Upon returning to the vehicle, I cleaned up and towelled off only to have a bird defecate directly onto my head and shoulder. There couldn’t have been a more fitting end to the day.

An impressive Minotaur beetle (Typhaeus typhoeus) in Shotover Country Park, Oxfordshire (L). A vial of dung beetles containing 104 Onthophagus joannae removed from a single pile of dog dung (Photo by Darren Mann) (M). A collection of beautiful Geotrupid beetles found on Ramsey Island (St. David’s, Pembrokeshire) (R).

While my experience in Oxford was overwhelmingly positive, it did not come without its challenges. The biggest challenge I encountered was dealing with low points caused by an all-encompassing imposter syndrome. The ease and speed at which my colleagues could process and synthesize information was nothing short of intimidating.  Meanwhile, I had trouble getting my first few experiments off the ground; while simultaneously everyone around me seemed to be successfully completing ground-breaking research. I felt slow, unaccomplished, and lazy.  I tried to compensate by putting in additional time: arriving earlier, staying later, and working on weekends – but this just left me feeling burnt-out. Plenty of exercise, structuring my work days, limiting social media, and hours of conversation with my partner, friends, family, colleagues, and supervisors helped me get back on my feet.

I’ve been home in Canada since the summer of 2016, working as a post-doc and a sessional lecturer. I think often and fondly about my time spent abroad in the United Kingdom and would highly recommend it as a study destination. While competitive, there are many different funding sources that Canadian students can access, including the Commonwealth Scholarships, NSERC – Michael Smith Foreign Supplement, Rhodes Scholarships, as well as numerous other international scholarships offered at the institutional level. Living in a foreign country provides you with a fresh outlook and opens your world to a range of new experiences, ideas, and perspectives. If international study is compatible with your other commitments, mull it over a little, and think about giving it a shot – becoming an international student might be just the adventure you’ve been looking for.

Are you a Canadian resident spending time abroad to conduct entomological research, or are you coming to Canada for the opportunity to study? If you’d like to share your story and experiences as part of the Foreign Perspectives series, please get in touch with us by email.

, , ,

Risky Buzz-i-ness

By Nicole McKenzie, PMRA

Growing up is a continuous lesson in assessing risks.

In my case, those risks included going for a double salchow with the risk of taking a bad fall, pushing my limits on my bike with the risk of an accident around every corner, or choosing an insect-filled educational path that was once considered risky for girls and women.

But with these risks come opportunities, and learning which risks are worth taking, and which are best avoided, is a critical lesson we all learn through experience and opportunity. Luckily for me, I survived the risks I took, and the lessons they taught me prepared me for a job that I love.

For the last decade, I have been an Evaluation Officer with the Pest Management Regulatory Agency (PMRA), the pesticide-regulating wing of Health Canada.

In an effort to join the #scicomm science communication revolution, I want to do a better job of explaining what I do.

No, I don’t pop a wheelie on ice while wrangling bees in a forest, but I do work that is almost as interesting.  I said *almost*.

What DO you do, then?

I deal with pollinators of the insect kind.  I look at how pesticides affect bees that collect and move pollen from male and female flower parts. This process is called pollination and it helps to produce fruit like apples. Pollinators are vital to not only Canada, but to the entire world’s food supply. I assess pollinator pesticide risk, which means I analyze research from some Entomology Society of Canada members as well as the greater pollinator community. With a team of scientists, I dissect the data from research studies and organize it around a risk assessment framework. The framework holds up the data so the team can see ALL of the highs and lows of the risk.  

From here we can step back and take in the whole risk picture gallery.

From the picture emerges a Pollinator Risk Management Plan that can be put in place to help safeguard our bees and food.

The Bikes and the Bees

Every day, we take what are deemed acceptable risks like driving a car at high speeds, and we try to prevent unacceptable risks like contracting measles that could affect our families and ourselves.

Deciding which risk is worth taking can be overwhelming. My risk assessing jam is The Risk Song by Risk Bites. It both winds my gears and chills me out.

Our method to assess risk is a lot like grinding through bike gears from smallest to largest. A better way of explaining this is by writing about going for a bike ride. But not just any bike ride, a big one like a Century Bike Race where you ride 100 km in one day, something I hope to accomplish this summer.

A Century Bike Race is risky, but like anything, it can be assessed and a plan developed to manage the risk.

To assess the risk, I first completed 3 tests as I trained on my bike. Like steps, each test relied on the one before to gather information on the risks.

The stepped tests (or tiers as we call them in the risk assessment world) start very basic and move toward a more realistic set-up closer to mimicking the actual bike race. At each step, if an effect was seen (or a risk identified) another test was completed.

Effect information:

Tier 1: Basic bike riding skills

  • TEST: Emergency stop or trying-to-stop-quickly-from-a-fast-speed.
  • EFFECT = Falling over. This might be the fastest (unintentional) way to end my race.

Tier 2: Group riding skills

  • TEST: Riding with the flow in a group of cyclists with bikes in front, behind and on both sides.
  • EFFECT = I wobble side to side as I ride.  No one wants to ride beside that.

Tier 3: Bike racing skills

  • TEST: Entering some shorter bike races.
  • EFFECT = I have never done a bike race before. *NOTE: I have competed in short distance triathlons, but ask any roadie about how these don’t count*. Bike racing seems a little like running with bulls, except with extra metal, spokes and wheel parts. Ouch.

Exposure Information:

It’s not enough to list effects seen from my bike race “tests”; I need to know about the race. I need to know details about what I could be exposed to during the race. This could include the road conditions, the type of race, the timing of the race and so much more.

Risk Assessment = Effects + Exposure

Using a framework, I compared the effects seen in the 3 tiered tests to what I expect to be exposed to during my bike race, and came up with this Risk Management Plan:


Tier 1

Basic bike riding skills

  • The race is mainly on paved roads
  • There is a hill at 87 km
  • There is a gravel road at 88 km, at the bottom of the hill
  • Race is in the summer
  • I want to finish well
Falling off bike
    • Wear a helmet
    • Carry a bike repair kit
    • Carry water and food
    • Carry emergency contact information
    • Practice emergency stopping
Tier 2

Group riding skills

Wobbling as I ride
    • Practice riding in a straight line
    • Practice riding in a group
Tier 3

Bike racing skills

I have never done a bike race before
    • Practice climbing hills
    • Practice biking on gravel
    • Enter smaller bike races before the big one
    • Wear weather appropriate clothing and sunscreen

If my bike analogy is still lost on you, connect with me on Twitter and I’ll try comparing it to landing a double axel instead. In the meantime, here’s a handy interactive infographic to explain the risk assessment process using caffeine as an example.  

The Bees and the Bikes

Assessing pesticide risk to pollinators is similar to assessing bike race risk. There are of course different pollinator tests for each of the 3 tiers and different exposure details needed for plants and pesticides but the process is the same. Each tier gets more specific and more realistic to what and how a pollinator could react when encountering a pesticide in the environment. Here is how a general pollinator risk assessment works starting with the tiered tests:

Effect information examples:

Tier 1: Individual bee effects

  • TESTS:
    • Observe individual bees after they are fed pesticides mixed with sugar
    • Observe individual bees after a pesticide drop is placed on their back

Tier 2: Semi-field effects

  • TESTS:
    • Observe bee colonies that are placed under tents with pesticide treated plants
    • Observe bee colonies that are fed pesticides mixed with sugar and/or pollen

Tier 3: Full-field effects

  • TEST: Observe bee colonies that are placed in fields of pesticide treated plants

Exposure information examples:

    • The type of pesticide and how it works
    • The plants that are to be treated with the pesticide
    • The timing of the pesticide applications and when the plants bloom
    • If pollinators are found on or attracted to the treated plants
    • The amount of pesticide found in the plant parts that pollinators may feed on or touch

Risk Assessment = Effects + Exposure

Just like with my bike race we use a framework to compare the effects with the exposure information but there is more to consider that can complicate the process.  

We also strive to understand the natural history of pollinators and the way crops are grown and harvested in Canada.   This crucial information is then overlaid on the exposure information and the effects seen. This melding together of ALL the collected information results in, you guessed it, a Pollinator Risk Management Plan.

Example of Pollinator Pesticide Risk Management Plan Steps

Some management steps that crop up in plans I’ve helped put together include:

  • Not allowing pesticides to be applied to any plant while it flowers
  • Reducing the amount of pesticide applied to a level below where the risk lies
  • Changing the timing of a pesticide application from before to after flowering
  • Eliminating the use or method of a pesticide application

Risky Buzz-i-ness keeps me busy

Working with pollinators has taught me that nothing is as straightforward as it seems. The science changes all the time, as do the risks as we learn more about bees, their behaviour, and how plants are grown in Canada.

There is one thing I do rely on, and that is how pollinator work is NEVER boring.

If you want more information about the pollinator risk assessment process… or to give me bike race tips here’s some links:

, , , ,

Love, Tiny Flies, and One Big Opportunity for Researchers to Work Together Helping Farmers on Both Sides of the Border ~ Foreign Perspectives

Me at the University of Guelph Elora Research Station.

by Elisabeth Hodgdon, Ph.D. Candidate, University of Vermont

“It’s a story of unrequited love,” says Dr. Yolanda Chen, my Ph.D. advisor, describing our research on pheromone mating disruption. Mating disruption, a pest management strategy that involves inundating a field with synthetic sex pheromone, prevents male insects from finding their mates because they can’t cue in on individual female pheromone plumes. As a result, the males become confused and die without mating. During my time as a Ph.D. student, I’ve spent a lot of time in Vermont and Ontario becoming intimately familiar with the sex lives of swede midge, a serious invasive pest of cruciferous crops.

Swede midge (Contarinia nasturtii, Diptera: Cecidomyiidae) first arrived in North America in the 1990s in Ontario. Vegetable growers started noticing that their broccoli, cauliflower, and cabbage plants were deformed and didn’t produce heads, and that their kale leaves were twisted and scarred. On canola farms, yields decreased because of distorted plant growth. The culprit, identified by Dr. Rebecca Hallett and her research group from the University of Guelph, was a tiny fly called swede midge. The midge, only about 2 mm long as an adult, is seemingly invisible to farmers because it is so small. Within a few years, the midge had made its way from Ontario to Québec and other provinces, and into New York and Vermont.

Female swede midge on cauliflower.

At the University of Vermont, we are the only research lab in the US working on this pest, which is currently causing up to 100% yield loss of organic broccoli and kale in our state. Naturally, it made sense for Dr. Chen to reach out to Dr. Hallett in Guelph for collaboration to investigate management options for this pest. Together, they wrote a grant funded by the USDA to conduct pheromone mating disruption research on swede midge that would take place in both Vermont and in Guelph.

This where I enter into the story. I jumped at the opportunity to join Dr. Chen’s lab, not just because I’m interested in insect pest management, but also because of my continuing love affair with Canada. I grew up in Vermont, a small state that borders Québec and has had lots of influence from our northerly neighbors: a history of French-Canadian immigrants, widespread availability of decent quality poutine, and signage in our largest city en français, among other things. I grew up learning French and visiting nearby Montréal and later went on to study agriculture at McGill University’s Macdonald Campus. I was thrilled at the opportunity to spend more time in Canada during my Ph.D. program.

Me and University of Guelph entomology graduate students at the ESC meeting in Winnipeg last fall: Charles-Étienne Ferland, Jenny Liu, me, Sarah Dolson & Matt Muzzatti (left to right). Photo credit: Matt Muzzatti.

I have gotten to know the English-speaking provinces better through my graduate work as a visiting Ph.D. student in Dr. Hallett’s lab in Guelph. Although many Canadians, especially those from nearby Toronto, describe Guelph as being a “small farm town,” it felt like a real city, especially coming from Vermont. I fell in love with Guelph — the year-round farmers market, old stone buildings, beautiful gardens, and emphasis on local food. The large sprawling farms just outside the city were the perfect places for me to do my research on swede midge pheromone mating disruption, which required lots of space between plots and treatments. Back in Vermont, where the farmland is wedged in small valleys between mountain ranges, we just don’t have the scale of crop production that there is in Ontario.

Josée Boisclair, me, Yolanda Chen, and Thomas Heer (left to right) at IRDA this summer getting ready to transplant broccoli for mating disruption research.

Working with Dr. Hallett opened up many doors and expanded my network in Canada. Last year, my advisor and I started a collaboration with the Institut de recherche et de développement en agroenvironnement (IRDA) in St-Bruno-de-Montarville, Québec. Earlier this winter, I practiced my French and mustered up the nerve to give two extension presentations on my swede midge work to francophone farmers in Québec. I was surprised at the number of people who came up to me after my talk, appreciative that I was making an effort to communicate with them in French rather than English. They were genuinely interested in working together with my research group across the border to help strengthen our research efforts to manage swede midge.

In all the time I’ve spent in Canada (which at this point can be measured in years), I can’t think of a time when I’ve felt unwelcome. On the contrary, I am impressed with how open most Canadians are to foreigners. I hope that we can continue to work together, despite language barriers, differing political systems, and other potential challenges, to gain traction in our efforts to find solutions for swede midge and other shared invasive species in the future.

, ,

Dévorés, par Charles-Étienne Ferland

Extrait de « Dévorés », un roman de science-fiction entomologique post-apocalyptique qui paraîtra aux Éditions L’Interligne (Ottawa) le 7 février 2018. « Dévorés » est le premier roman de Charles-Étienne Ferland, candidat à la maîtrise en entomologie à l’Université de Guelph et cofondateur d’une jeune entreprise qui conçoit des applications mobiles utilisant les technologies d’apprentissage automatique pour identifier les insectes.

Dans les dix jours qui suivirent le début de l’invasion, les insectes privèrent l’Homme de tout moyen de subsistance. Ils paralysèrent le secteur agroalimentaire, sans toucher aux herbes ou aux arbres incomestibles.

Les projets de culture en serre hermétique, et ceux dans les grottes souterraines, furent autant d’échecs. Inexplicablement, l’insecte parvenait à s’infiltrer et à saccager les jeunes pousses. Les tentatives de transmettre un virus aux voraces ravageurs des cultures ou de les empoisonner au moyen de cristaux parasporaux de bacilles furent vaines. L’utilisation de cultivars transgéniques fit chou blanc. L’insecte n’était pas appâté par les attractifs alimentaires synthétiques, ni par des phéromones artificielles développées en vitesse. Il n’existait aucun ennemi naturel apparent.

Dehors, des avions survolaient les champs, pulvérisant à profusion de l’insecticide sur les guêpes insatiables poursuivant leur carnage. Malgré la menace, plusieurs groupes environnementaux manifestaient dans les rues. Ils étaient furieux d’assister, impuissants, à la destruction des écosystèmes, cinquante ans après la publication de Printemps silencieux écrit par la biologiste Rachel Carson. Dans les régions nordiques, on construisait des serres isolées. On aménageait des semi-remorques hydroponiques chauffées et éclairées. Malgré les protocoles de quarantaine, les guêpes y apparaissaient dès que les conditions devenaient adéquates pour cultiver. Leur propagation défiait toute logique.

Après la disparition de presque toute la nourriture, la plupart des populations animales d’élevage se mirent à décliner à l’instar de l’humanité. Nombreuses furent les familles qui partirent vers les côtes ou vers les régions riveraines. Les populations de poissons diminuaient au rythme extra-industriel de la surpêche. D’autres gens prirent la route du Nord ou des déserts. Plusieurs personnes et animaux moururent de faim.

Au cours d’une décade, des émeutes éclatèrent lorsque les supermarchés épuisèrent leurs stocks. Les hécatombes se multiplièrent. Le nombre de croisades égoïstes au nom de la faim grimpa en flèche. La situation donnait lieu à des luttes brutales et sanguinaires entre insurgés et forces armées. Tout cela pour les dernières conserves qui hantaient les étalages des magasins à grande surface.

Alors que la faim et la chaleur de l’été devenaient chaque jour un peu plus insupportables, que la Terre semblait tout indiquée pour devenir un désert stérile, la mutation se produisit. Une étrange cascade de transformations génétiques reprogrammant l’insecte. La guêpe adopta une nouvelle proie. Un seul et unique animal : l’Homo sapiens. Le jour de la mutation, la ville devint méconnaissable. De violentes secousses sismiques mirent à terre la moitié des bâtiments, des pylônes de lignes à haute tension et des arbres. Ce même jour, les guêpes femelles émergèrent du sous-sol. On aurait dit une version de l’insecte mâle aux dimensions décuplées. Des monstres capables de découper un homme en pièces. Tous ceux qui étaient à l’extérieur, en voiture, ou même un peu trop près d’une fenêtre au moment de l’émergence des femelles, furent condamnés. Ils se firent happer par les essaims si denses qu’on aurait dit qu’il s’agissait d’un seul et unique organisme, quelque Léviathan issu des Enfers. Les militaires déployés sur le terrain pour assurer un semblant d’ordre ouvrirent le feu. Les cibles étaient trop rapides, trop nombreuses. Les survivants se barricadèrent chez eux. D’autres se regroupèrent dans les souterrains du métro, un des rares endroits où les insectes anthropophages ne s’aventuraient pas depuis la mutation. Dès lors, l’être humain fut restreint à un mode de vie nocturne. Car dès que le soleil se levait, des nuées de guêpes affamées s’accaparaient les villes fantômes. Le jour leur appartenait. Et celui qui s’aventurait à l’extérieur lorsqu’il faisait clair était voué à un destin funeste, poignardé de dards comme César de dagues sur le Champ de Mars.

Peu à peu, les autorités se montrèrent plus discrètes jusqu’à ce que l’électricité, les médias, les services, les communications et l’économie devinrent des reliques d’avant la crise. Des vagues de maladies surgirent, exacerbées par les misérables conditions sanitaires quasi médiévales. Entre autres, la dysenterie et le choléra atteignirent bon nombre de survivants. Les fièvres et les infections affligèrent les enfants comme les adultes. Au début, on inhuma les défunts, puis on les brûla – ce qu’il restait d’eux après le festin des guêpes – par incinération massive durant la nuit. D’autres furent empilés dans des fosses communes jusqu’à ce qu’elles débordent et que les dépouilles gisent dans les rues. On ne se donna même plus la peine de s’approcher ensuite. On rompit le contrat social. Devant l’échec de la loi martiale, on renonça aux règles de société, désormais révolues, pour s’en remettre à une nouvelle loi : chacun pour soi. La loi de la jungle. Dans la ville, des bandes d’assassins, de pillards et de brigands se formèrent, prêtes à tout pour mettre la main sur des armes, de la nourriture, de l’essence ou des médicaments en terrorisant les camps de survivants. En voyant s’éroder les fondations de la civilisation, force était de constater qu’avec le ventre vide, l’homme retrouvait un instinct de survie des plus égoïstes.

Dans la métropole anarchique qui comptait désormais moins de dix mille âmes, Jack et Frank partageaient leur appartement avec Chad et Maddie. Il valait mieux se tenir à plusieurs. C’était plus sûr ainsi. Le groupuscule partageait un point commun. Aucun d’entre eux n’avait réussi à rejoindre les siens. La famille de Maddie demeurait en Europe. Les trajets transatlantiques, aériens comme maritimes – s’il y en avait encore –, étaient supposément réservés aux ambassadeurs, aux émissaires ou aux plus fortunés. Chad avait perdu ses proches dans les épidémies. Les centres de soins avaient été pris d’assaut et, sans antibiotiques, leurs chances de survie avaient chuté. La dernière fois que Jack avait eu des nouvelles de son père, de sa mère et de sa sœur, ils étaient en voilier sur les Grands Lacs. La famille avait mis le cap sur Main Duck Island, une petite île isolée et inhabitée baignant dans le lac Ontario, qui servait de colonie de pêche au début du 19e siècle. Des rumeurs circulaient à propos de havres épargnés par les insectes. « Pourvu que Main Duck n’ait pas été touchée. » Privé de moyen de communication, Jack n’en aurait le cœur net que s’il parvenait un jour à y poser le pied. Quant à Frank, même avant les évènements, il n’avait jamais été des plus volubiles au sujet de ses proches.

Au mois d’août, la civilisation d’avant l’infestation aurait aussi bien pu être un mythe, l’histoire d’un éden idyllique que l’on racontait aux enfants d’après les réminiscences des survivants. On entendait même parler d’une secte vénérant les guêpes. Des croyants extrémistes citaient les textes anciens, convaincus qu’il s’agissait d’une réédition augmentée de la huitième plaie d’Égypte. Un fléau divin prophétisé. L’apocalypse. La fin.

Le roman est disponible en librairie et sur amazon.
, ,

Czech out research abroad ~ Foreign Perspectives


By Dr. Lauren Des Marteaux, Postdoctoral fellow, Biologické centrum AVČR


No one would describe me as having wanderlust; I am a nester, molding my surroundings for maximum comfort, convenience, and aesthetics. I loved my historic apartment, my extensive set of kitchen gadgets, and all of Canada’s familiarities (AKA Tim Horton’s everywhere, anytime). As a fresh post doc I had no idea what to expect when relocating from populous southern Ontario to a dorm room with a shared kitchen in small-town Czech Republic. Now (six months later), the only way to describe my time abroad would be overwhelmingly happy. Read more


A new home for an old Blog

Welcome to the new home of the ESC Blog!


Nearly 350 million years ago, insects evolved the ability to totally transform themselves, and proceeded to take over the planet in a way that no other group of organisms has since. These new holometabolous species had stumbled upon the process of complete metamorphosis, a complex physiological process that is controlled by hormonal regulation, connected to outside stimuli, and constrained by natural selection, and which provided them the opportunity to further divide and conquer ecological niches while avoiding having adults compete directly with larvae for resources and space.

Today, insects with the ability to rearrange and reassign the majority of their cells into a new phenotypic expression are considered by many to represent a perfect allegory for rebirth, a new chance to make a difference, and a new opportunity to take on the world in ways they couldn’t before. While we here at the ESC Blog aren’t immune to allusions of grandeur and promises of world-changing impact, for now we’ll happily settle for a metamorphosis that results in a new look and home on the newly redesigned Entomological Society of Canada website, while we continue to provide a means for entomologists to share their passion, interests, and ideas in a public forum.

The ESC Blog debuted in June, 2012 at escsecblog.com, primarily because the old ESC website predated the very concept of a blog, and wasn’t technologically capable of hosting one. Now that the ESC homepage has been redesigned and updated thanks to Jordan Bannerman and the ESC Web Content committee, it only makes sense for us to make like a monarch and migrate, allowing us to better integrate with all of the other endeavours and efforts associated with the Entomological Society of Canada, and provide our authors and community better access to the ESC membership-at-large.

If this is your first introduction to the ESC Blog, thanks for joining us! While we work to continue bringing new content to the blog, why not poke through our archives (which we’ve fully migrated over to our new home) and see what we’ve been up to the last 5 years? Originally founded by Chris Buddle, Crystal Ernst, and Morgan Jackson as a means for entomologists with an interest in Canadian entomology to share what they were up to, the ESC Blog has provided an opportunity for entomologists and insect enthusiasts to contribute to a global conversation. Since 2012, we’ve welcomed Sean McCann as an additional editor, and published more than 200 articles that have been widely shared and read online, and we look forward to continuing to bring the inside scoop on insect research for years to come. We’ve covered everything from the pluralization of thrips, to an entomologist’s Nobel connection, and are thrilled to share new research from the next generation of entomologists.

If you’re interested in contributing to the ESC Blog, don’t hesitate to get in touch! We’re always looking for stories from the lab or field, updates on new and emerging research that you’re involved with (or that you just admire!), and the ways in which insects intersect with our lives. If you have photos, videos, or observations you’d like to share, graduate student or employment opportunities you need to recruit, or resources for your research that you need to find, we’re more than happy to help you share them with the entomological community in a timely manner. And if you’re on Twitter, be sure to follow @CanEntomologist for up-to-the-minute updates from your society, as well as its members, editors, and publications.

, , , , ,

ESC Blog Classifieds – U Winnipeg MSc Opportunity Rearing Endangered Butterflies

MSc Graduate Student Opportunity in the Department of Biology, University of Winnipeg

Project title: Developing a laboratory rearing technique for the endangered Poweshiek skipperling and assessing the feasibility of introduction into tall grass prairie habitats in Manitoba.

Objectives: The Poweshiek skipperling (Oarisma poweshiek) is an Endangered butterfly species that is in critical danger of becoming extinct. Less than 500 individuals remain in the wild and the grasslands of southeastern Manitoba represent one of the species’ last strongholds. The species inhabits remnant patches of tall-grass prairie and in the past 10 years has greatly declined across its historical range. Working at both the Assiniboine Park Zoo in Winnipeg and the University of Winnipeg, the student will help develop laboratory rearing techniques and to determine the feasibility of reintroducing the Poweshiek skipperling into tall grass prairie sites where it has been extirpated or new potential prairie habitat. The student will study life history factors (such as mortality and survivorship of various development stages) and evaluate potential tall grass prairie sites for reintroduction. This study is in coordination with the University of Winnipeg, Assiniboine Park Zoo, and Nature Conservancy of Canada (NCC).

See flyer for further details and how to apply.

, , ,

Ancient spiders from an ancient forest


Ever wish you could travel back through time and see a west coast Vancouver Island rainforest before industrial logging? To see huge old trees, intact soils and life in a climax ecosystem? You do not have to invent a time machine, you only need to travel about an hour out of Port Renfrew to the spectacular Walbran Valley.


As part of an effort to document the biodiversity of the valley, I traveled with fellow arachnologists Claudia Copley, Darren Copley, Zoe Lindo, and Catherine Scott, along with birders, mycologists, lichenologists and assorted volunteers to spend a day among the giant trees. We were there at the invitation of the Friends of Carmanah-Walbran to lend our expertise to the effort of catloguing the biodiversity of this beautiful, yet still at-risk west coast habitat.

We arrived at the somewhat storied “Bridge to Nowhere”, where in 1991 environmental protesters confronted the logging companies, the RCMP and the government of British Columbia, holding the line against industrial exploitation of a rare ecosystem. What the activists were asking for seems modest: Can’t we have just this one watershed, among all the others on Vancouver Island, be preserved and protected from the clearcutting and degradation that is the fate of every other valley on the Island?

20170528-IMG_00212. Pacheedaht elder Bill Jones walks across the Bridge to Nowhere

While the Friends of Carmanah-Walbran took the other participants deep into the woods on hikes, we arachnologists ventured only short distances into the woods, as our slow and careful sifting through the soil and beating of the bushes is certainly not a thrill ride for everyone. For us, however, it was thrilling, as within 30 minutes of arrival on site, we had found a beautiful and seemingly dense population of Hexura picea, a relative of tarantulas.

20170528-IMG_00803. Hexura picea, a tarantula relative, brought out of its underground silk tunnel complex for a photo shoot.

These little, pretty, but nondescript spiders live in small silk tunnel complexes among the soil and rocks of the forest floor. Each tunnel has a main entrance lined with silk, and several other openings which may facilitate rapid escape or offer alternate exits at which to snare prey. Being members of the suborder Mygalomorphae, they are indeed tarantula relatives, a group of spiders that closely resemble ancient spiders. Many mygalomorphs retain traces of segmentation on their abdomens, unlike the more modern araneomorph spiders. In the Mecicobothriidae (to which Hexura belongs) the terminal spinneret segments bear “pseudosegmentation”


The section of forest we found this spider in was a real “tangled bank”, in fact the scree slope associated with Walbran creek and a small tributary, which has since been covered with a layer of soil and a stand of hardy trees.

20170528-IMG_00574. Erosion is a gentler process in a forested valley, with trees holding on to what would be a talus slope higher in the mountains. The soils beneath these trees support an extensive food web.

Finding these spiders in the Walbran was not unexpected, as they had previously been found in the Carmanah Valley and at Avatar Grove, but their presence on Vancouver Island is somewhat puzzling, as they represent the only known Canadian population, and are seemingly not present on the BC mainland.

Given the dense population in the Walbran, the valley would be an wonderful place to study their behaviour, which so far is undocumented. We would presume that much of the activity of these spiders takes place at night, although Catherine was able to lure one out of its burrow by tickling the silken doormat with a twig.

20170528-IMG_01115. Hexura picea emerges from its silken tunnel and onto its “doormat” to “kill” a vibrating cedar twig.

The litter sampling we conducted will surely yield many more species, although we have to wait until the Berlese funnels have extracted all of the arthropods. The work of sampling and cataloguing biodiversity takes time, and is not totally congruent with the rapid “bioblitz” ethos.

If you are ever in BC, and want a trip back in time (never mind our politics), please do not hesitate to come out to the Walbran Valley. You may just discover something amazing.

20170528-IMG_02486. Darren and Claudia picking up pan traps beside the Malaise flight-intercept trap.





, , ,

ESC Blog Classifieds: Greenhouse Entomologist (Beneficial Insects)

Great Lakes Greenhouses (Leamington, ON) is seeking a full-time entomologist to aid in the development and implementation of rearing protocols for the production of beneficial insects used in the greenhouse industry. Knowledge and experience with experimental design, statistical analysis, beneficial insect propagation and maintenance, and the ability to perform independent research are all necessary to succeed in this position.

Great Lakes Greenhouses has been a family owned and operated hydroponic vegetable grower in Leamington, Ontario since 1983. Our original 2-1/2 acre greenhouse operation has evolved into an environmentally friendly 90 acre state of the art facility that propagates, grows, packages and ships more Long English seedless cucumbers on a year round basis than any other greenhouse operation in North America. Due to our commodity share hold in the market and our Primus Certified Food Safety designation for both our greenhouse and packing operations, our cucumbers have reached most major retailers’ shelves across the USA and Canada. 

See full job ad for more details, and send resumes to James Tetreault (james@greatlakesg.com) to apply.

, , , , , ,

Don’t read this article

I will admit that the headline was thoroughly and completely “click bait”. That’s because I was worried that “The new ESC Science Policy Committee and its mandate” would have you move along to the next article. And I hope that giving you the goods now on what this article is about doesn’t cause that right… now.

For those of you who are still with me, and I hope that is a majority of our members, I am aware that policy is not generally considered an exciting topic. But in this era of climate change, environmental degradation, increasing population pressure on our agricultural and silvicultural output, emergent and spreading vector-borne diseases, research funding challenges, and rapidly shifting politics in Canada and many of our largest trading partners, we as entomologists cannot merely sit back and let policy happen. We need to engage with policy makers to encourage careful decision making with the long view in mind.

Our diverse Society membership has an equally diverse set of skills and perspectives to offer to Canadians and the rest of the world. But engagement can only happen if we are willing to put fingers on the pulse of various issues, and to collaboratively marshal responses to issues as they begin to emerge. In other words, we can only be effective if we are able to anticipate in time and react with collective care and wisdom.

Over the past many years, the ESC has maintained a Science Policy and Education Committee. That committee has been effective in many areas including over the past several years:

  • expressing concern to the federal government about travel restrictions on federal scientists wishing to attend ESC meetings,
  • encouraging the continued support of the Experimental Lakes Area,
  • responding to NSERC consultations, and
  • drafting the ESC Policy Statement on Biodiversity Access and Benefit Sharing which was later adopted by our Society.

However, because the combination of both public education and public policy was a substantial and growing mandate, the ESC Executive Council Committee decided in 2015 to split the committee into two, each part taking care of one of the two former aspects.

In October 2016 I was asked to chair and help to formulate the new ESC Science Policy Committee. Your committee now consists of (in alphabetical order):

  • Patrice Bouchard (ESC First VP, Agriculture and Agri-Food Canada)
  • Crystal Ernst (appointed member, postdoctoral fellow at Simon Fraser University)
  • Neil Holliday, (ESC President, ex officio committee member, University of Manitoba)
  • Dezene Huber (appointed member as academic representative, Chair 2016/2017, University of Northern British Columbia)
  • Fiona Hunter (ESC Second VP, Brock University)
  • Rachel Rix (appointed member and student and early professional representative, Dalhousie University)
  • Amanda Roe (appointed member as government representative, Natural Resources Canada – Canadian Forest Service)

Each executive member’s term is specified by their ESC executive term. Each appointed member is a member for up to 3 years. The Chair position is appointed on a yearly basis. The terms of reference specify that the committee should contain members “who (represent) the Student (and Early Professional) Affairs Committee, and preferably one professional entomologist employed in government service and one employed in academia.

We are officially tasked “(t)o monitor government, industry and NGO science policies, to advise the Society when the science of entomology and our Members are affected, and to undertake tasks assigned by the Board that are designed to interpret, guide, or shift science policy.”

We are now working on putting together an agenda, and have started to work on a few items. For instance, you may recall an eBlast requesting participation in Canada’s Fundamental Science Review that was initiated by Hon. Kirsty Duncan, Minister of Science. We hope that some of you took the opportunity to send your thoughts to the federal government.

As we develop an agenda, we would like to consult with you, the ESC membership. Please tell us:

  • What policy-related issues do you see emerging in your area of study, your realm of employment, or in the place that you live?
  • How might the ESC Science Policy Committee integrate better with your concerns and those of the rest of the membership? 
  • How can our Society be more consultative and responsive to the membership and to issues as they arise?
  • Who are the people and organizations with which ESC should be working closely on science policy issues?
  • How can you be a part of science policy development, particularly as it relates to entomological practice and service in Canada and abroad?


Please email me at huber@unbc.ca with your thoughts, questions, and ideas. We know that many of you are already involved in this type of work, and we hope that we can act as synergists to your efforts and that you can help to further energize ours.


Dr. Dezene Huber

Chair, ESC Science Policy Committee

This article also appears in the March 2017 ESC Bulletin, Vol 48(1).