As a graduate student, publishing a paper is a big deal.  After spending countless hours doing the research, slogging through the writing process, soliciting comments from co-authors, formatting the paper to meet journal guidelines, and dealing with reviewer comments, it’s nice to finally get that acceptance letter and know that your work is getting out there.

We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. The ESC Student Affairs Committee is happy to be posting a second roundup of papers authored by Canadian graduate students. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

So, what’s hot off the press, you ask? Here’s what some entomology grad students have been up to between 31 January 2015 and 4 March 2015:

Systematics and Morphology

Piophilidae is an important family of flies to forensic entomology: their occurrence on a corpse can help determine post-mortem interval and assist legal investigations. Sabrina Rochefort (McGill University) and colleagues provide an updated key to the forensically pertinent Piophilidae in the Nearctic Region. Article link

Read more in a post on the ESC Blog

Physiology

Enrique Rodriguez (University of Ottawa) and colleagues put the membrane pacemaker hypothesis to the test for the first time in invertebrates. They found that membrane composition of flight muscle in tropical orchid bees varies with body size and flight metabolic rate. Article link

Behaviour and Ecology

How do bumblebees deal with flowers that are blowing in the wind? Hamida Mirwan (University of Guelph) and colleague found that one species of bee showed no preference between mobile and immobile flowers but motion may be a factor in terms of foraging performance. Article link

Bombus impatiens

Bombus impatiens – By [1] [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

Raphaël Royauté and colleagues found that the personality of a jumping spider was affected by sublethal insecticide exposure. Royauté wrote to us,

Jumping spiders exposed to low doses of insecticide show changes in their personalities. Insecticides alter behaviours by jamming neural transmission. Most studies on insecticide toxicity compare how behaviours differ in average between insecticide-exposed and control groups, but they don’t take into account how insecticides affect variation in behaviour (aka personality). Bronze Jumping Spiders exposed to the insecticide had lower amount of personality differences in activity and prey capture behaviours and exposed spiders were in general more “unpredictable”. These effect also varied by sex. Activity differences were more strongly affected in males while prey capture capacities were more strongly altered in females. 

These results suggest that the effects of insecticides on personality differences may manifest before any effects on the population as a whole are detected, in which case scientists may be frequently underestimating the toxicity of insecticides. Spiders play an important role in agricultural fields as they help regulate pest outbreaks. These personality alterations may affect spiders’ capacity to provide this important ecosystem service.

A more detailed explanation of this research is available here” 

Eris militaris

A female jumping spider, Eris militaris (Araneae: Salticidae). Photo by Crystal Ernst; provided by Raphaël Royauté

Matt Yunik (University of Manitoba) and colleagues discovered that unfed American dog ticks have the ability to survive an additional winter. Prior to this research, it was thought that these unfed ticks searching in spring died before the next winter. Article link

Fanny Maure (Université de Montréal) and others found and characterized a new RNA virus of Dinocampus coccinellae, a parasitoid of the ladybird beetle Coleomegilla maculata. The virus appears to be a symbiont of the parasitoid which is stored in the adult wasps’ oviducts and is transmitted by the parasitoid larva to its ladybird host. The virus then moves to the ladybird’s brain and replicates, inducing paralysis and twitching, around the same time that the parasitoid larva emerges and spins a cocoon between the legs of its host. The infected ladybird then acts as a twitchy bodyguard against predators while the parasitoid develops. Then, amazingly, when the adult parasitoid emerges from the cocoon, the viral infection in the ladybird’s brain clears and the host resumes normal behaviour! Article link

A ladybird "bodyguard" protecting its parasitoid from predators.  Photo provided by Jacques Brodeur.

A virally-manipulated ladybird “bodyguard” protecting its ‘puppet master’ from predators. Photo provided by Jacques Brodeur.

Former UdeM student Fanny Maure with her PhD work featured on the cover of National Geographic! Photo provided by Jacques Brodeur.

Former UdeM student Fanny Maure with her PhD work featured on the cover of National Geographic! Photo provided by Jacques Brodeur.

Megan McAuley (University of Guelph) and colleagues found that repeated conditioning with a floral scent is needed for long-term memory establishment in bumblebees. Article link

Murali-Mohan Ayyanath and colleagues show that sublethal doses of an insect growth regulator stimulate reproduction in the green peach aphid. Article link

Myzus persicae

Myzus persicae – By Scott Bauer [Public domain], via Wikimedia Commons

Do different pollen-packing behaviours by bees affect the functional value of pollen? PhD student Alison Parker and colleagues found that the pollen transported by non-corbiculate bees remains fully functional whereas the packing behaviour by corbiculate bee species can decrease the functionality of their pollen. This research suggests that non-corbiculate bees may be more valuable pollinators. Article link

A study by Lorraine Adderly and colleague finds that solitary bees are important for pollination in seablush plants in the Gulf Islands and on Vancouver Island. Article link 

Insect Management

Chaminda E. Amal de Silva helped provide evidence for there being high rates of blueberry spanworm parasitism in lowbush blueberry fields in eastern Canada. De Silva and colleagues suggest using augmentative or conservation biological control as a management technique against spanworm. Article link

For a forest moth, colouration is costly—especially under poor conditions (Article link). Coming soon, we will be featuring a post by Jessica Ethier (Concordia University), who took the lead on this long-term project.

As a graduate student, publishing a paper is a big deal.  After spending countless hours doing the research, slogging through the writing process, soliciting comments from co-authors, formatting the paper to meet journal guidelines, and dealing with reviewer comments, it’s nice to finally get that acceptance letter and know that your work is getting out there.

We want to help publicize graduate student publications to the wider entomological community.  Every month or so, the ESC Student Affairs Committee will post a roundup of papers authored by Canadian graduate students.

We don’t anticipate that these lists will be comprehensive (alas, Google Scholar alerts aren’t perfect), but should give a nice ‘taste’ of student entomological research in Canada.  If you want your recently published article featured (or we missed yours last month!), send us an email at entsoccan.students@gmail.com

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

Without further delay, here’s what entomology grad students have been up to lately (articles published online between December 1, 2014 and January 18, 2015):

Behaviour and Physiology

Miruna Draguleasa (University of Toronto) and colleagues found that apparently bumblebees love caffeine just like many sleep-deprived grad students.

Two students, Carling Baxter and Rachael Barnett, and their colleagues at McMaster University found that male fruit flies become less choosy when selecting mates as they age.

Drosophila_melanogaster_-_side

Older male fruit flies (Drosophila melanogaster) are less choosy. Photo by André Karwath aka Aka (Own work) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)%5D, via Wikimedia Commons

Laura Sedra and colleagues at the University of Toronto Mississagua investigated how blood-feeding assassin bugs (Rhodnius prolixus) control their oviduct contractions

Laura Ferguson (University of Western Ontario) helped to determine that modifications of ion balance mediate cold tolerance in Drosophila.

The downside of being a sexy male tree cricket? You might not live very long. Kyla Ercit (University of Toronto Mississauga) and colleagues found that male Oecanthus nigricornis individuals with wide heads and small legs were most attractive, but individuals with narrow heads, large legs, and intermediate pronotum length were most likely to survive.

Rosemarie Vallières (Université Laval) and colleagues found that metabolism and winter survival of temperate hemlock looper populations in Québec will be more affected by fall heat waves (compared to boreal populations), which are increasing in frequency due to climate change.

Hemlock Looper, Bon Echo

Hemlock looper adult. Photo by D. Gordon E. Robertson (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)%5D, via Wikimedia Commons

Meet Zandawala and Zina Hamoudi (University of Toronto Mississauga) confirmed the identification of the adipokinetic hormone receptor in Rhodnius prolixus. The hormone is known to mobilize lipids, carbohydrates and proline for energy consuming activities.

New research by Fanny Maure (Université de Montréal) found that ladybirds can survive (and even reproduce!!) after parasitism and behavioural manipulation by a wasp. Featured on the cover of the November 2014 issue of National Geographic Magazine, and discussed in a fantastic accompanying article by Carl Zimmer.

Does the Earth’s magnetic field serve as a reference for alignment of the honeybee waggle dance? Short answer: At least local (ambient) geomagnetic field does not act as the reference for the alignment of waggle-dancing bees. Read more on the research conducted by Veronica Lambient and colleagues at Simon Fraser University here.

Ecology

A recent study by Dorothy Maguire (McGill) and colleagues in a Quebec forest ecosystem finds strong top-down effects of predators on arthropods, but weak effects of fragmentation on predation and herbivory levels.

McGill2

McGill1

Students from McGill's Buddle Lab collecting insects using a beat sheet, sampling bird exclosures, and measuring damage on leaves. Photos courtesy of Dorothy Macguire.

Students from McGill’s Buddle Lab collecting insects using a beat sheet, sampling bird exclosures, and measuring damage on leaves. Photos courtesy of Dorothy Macguire.

Guillaume Sainte-Marie (Université du Québec à Montréal) and colleagues found that promoting hardwoods does not appear to reduce spruce defoliation during outbreaks of spruce budworm.

Crisia Tabacaru (University of Alberta) and colleagues determined that competitors and natural enemies may help prevent establishment of mountain pine beetle after fires.

Gun Koleoglu and Tatiana Petukhova (University of Guelph) found that Africanized honey bees may have higher viral resistance than European honey bees following parasitism by Varroa mites.

Researchers at the University of Alberta, including Devin Goodsman, found that the interactions between a lepidopteran defoliator and a bark beetle shifted from facilitative to competitive depending on outbreak severity.

Sean McCann and Catherine Scott (Simon Fraser University) discovered that the red-throated caracara rivals the predatory impact of army ants on some populations of Neotropical social wasps.

Genetics

A new molecular marker for phylogeographic and population studies of the black-legged tick has been identified by Chantal Krakowetz (University of Saskatchewan) and colleagues. And in a follow-up study, the mitochondrial gene variation could point to origins of tick populations in the United States and the potential risk for Canada.

A deer tick, Ixodes scapularis. Photo Credit : Jim Gathany [Public domain], via Wikimedia Commons

At York University Daria Molodtsova and Brock Harpur, together with colleagues, linked genetic mutations in a transcriptional network to the evolution of complex behaviours in honey bees.

Pest Management and Biological control

Two studies conducted at the Université de Montréal by Julie Faucher-Deslile and colleagues found protein content is not the only factor important in selecting diet supplements for predatory mites and that supplementing predatory mite applications with apple pollen may increase the control of thrips in greenhouses.

Insects used in modern weed biological control programs are highly host-specific to their target weed, but can sometimes exhibit ‘spillover’ herbivory on related nontarget plants. Determining where and why spillover occurs can help us predict its potential to negatively affect native plant populations. Here, Haley Catton (UBC Okanagan) and colleagues used two field experiments to show that a controversial biocontrol weevil exhibits spillover when at high density, but does not find or feed on nontarget plants even a few metres from release points. This is good news, as the more localized the spillover, the lower the chance of negative population-level impacts to nontarget plants.

<i>Mogulones crucifer </i>biocontrol weevils painted for a mark-release-recapture experiment involving target and nontarget host finding.

Mogulones crucifer biocontrol weevils painted for a mark-release-recapture experiment involving target and nontarget host finding. Image by Haley Catton.

Christine Miluch (University of Alberta) and colleagues looked at how to maximize the attractiveness of pheromone traps to diamondback moth males in canola.

An interesting study conducted by Simon P. W. Zappia and Amber Gigi Hoi found that regardless of how energy-deprived they are, DEET will keep mosquitos off your stinky socks!

A Canadian research team from Simon Fraser University, including graduate students Michel Holmes and Jason Draper, has identified the bed bug aggregation pheromone! The discovery was featured at several media outlets, including “Wired”.

Female bed bug

A female bed bug. By Gilles San Martin from Namur, Belgium (Cimex lectularius (bed bug)) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

Until next time!

The ESC Student Affairs Committee

The Editorial Board of The Canadian Entomologist (TCE) welcomes the comments that we receive from readers and authors.  We take these comments seriously and implement appropriate changes when possible.  We are pleased to announce three such changes that will further improve the speed, quality and flexibility of the service provided by TCE.

  • Simplified submission requirement.  Authors previously were required to submit papers with abstracts in both French and in English.  Although they can still do so, authors now need only submit an abstract in the language of the submitted paper; i.e., French or English.  This change eliminates delays associated with having abstracts translated, which will accelerate manuscript publication.
  • New open access option.  Although TCE has no page charges, there has always been a subscription fee.  As of 2014, authors now have the option of paying a one-time open access (OA) fee.  Payment of the OA fee makes articles freely available as soon as they are published online to anyone with internet access.
  • More content.  Elimination of page charges has increased submissions to the journal, with a consequence increase in the number of papers being accepted for publication.  In response, TCE is expanding its content by 10%.  This equates to an annual increase of 72 pages, or approximately 1-2 additional papers per issue.

In addition to the above changes, there are several other items that may be of interest.  ‘Instructions to Authors’ were revised in March of this year.  Revisions include instructions for the submission of ‘Supplementary Material’ and a link to third-party services that specialize in language editing.

You also may wish to read “Open access, predatory publishers, The Canadian Entomologist, and you”.  This article appears in the Bulletin of the ESC (Sept. 2013, p. 131), and examines issues that should be interest to anyone publishing in scientific journals.

In closing, we note that Dr. Chris Buddle (McGill University, Montreal, QC) will be completing his tenure as Editor-in-Chief this fall.  Dr. Kevin Floate (Agriculture and Agri-Food Canada, Lethbridge, AB) is the incoming Editor-in-Chief.

 

We thank you, the authors and readers, for making TCE an ongoing success.

Chris Buddle

Kevin Floate

By Justin Renkema, Post-Doc, University of Guelph

—–

It was an early morning after a long drive from Guelph to a small fruit farm in Chatham-Kent where my undergraduate student, Caitlyn, and I were conducting a small-plot spray trial to test the effect s of repellents against Drosophila suzukii (Spotted Wing Drosophila), a recent invasive and serious fruit pest.  I knew the raspberry patch was heavily infested with D. suzukii so before getting to work, to amuse ourselves at the start of the day, I started gently shaking canes, and we watched the swarms of fruit flies disperse and hover over the fresh fruit.  However, as I went to grab a branch low to the ground, I noticed something different about one of the fruit flies sitting on a leaf.  It had characteristic white “racing stripes” along its thorax, unlike any other fruit fly I had seen.  This was it!  This was very likely Zaprionus indianus or African fig fly, another invasive and potential fruit pest that we knew was moving northwards from the southeastern USA.  Caitlyn grabbed a vial and we successfully had, on 10 September 2013, what we thought was the first capture of this fly in Ontario and Canada.

Zaprionis indianus photographed by Dr. Stephen Marshall in Africa. (Photo C Stephen A. Marshall, used with permission)

Zaprionis indianus photographed by Dr. Stephen Marshall in Africa. (Photo © Stephen A. Marshall, used with permission)

 Indeed the fly was Z. indianus, as determined by Meredith Miller, a M.Sc. student at the University of Guelph working on taxonomy of Drosophila spp. in Ontario.  Through contact with Hannah Fraser at Ontario Ministry of Agriculture Food and Rural Affairs, we learned that their Ontario-wide monitoring program for D. suzukii had also picked up some African fig flies in apple-cider vinegar traps, and a few at an earlier date than our find in Chatham-Kent.  Colleagues in Quebec (Jean-Phillipe Légaré and others at MAPAQ) had also found what they believed were Z. indianus.  Once all the material was collected and examined by Meredith, we submitted a scientific note documenting our Z. indianus discovery in Canada that was published by the Journal of the Entomological Society of Ontario.

Zaprionus indianus is native to the Afrotropical region.  It was found in Brazil in 1998 where it was given its common name because it became a significant pest of figs.  In 2005, Z. indianus was discovered in Florida and has since been found successively further north and west in the USA (see a map of its distribution here).  It is likely that the North American infestation did not come from the Brazilian population.  Zaprionus indianus is the only member of Zaprionus present in Canada, and therefore the reddish-brown head and thorax and particularly the silvery stripes that extend from the antennae to the tip of scutellum can be used as distinguishing features.

Zaprionis indianus dorsum showing characteristic white stripes

Unlike D. suzukii (thankfully!), female Z. indianus do not possess heavily sclerotized and serrated ovipositors and are not currently seen as a serious threat to temperate fruit crops.  They have been reared from a number of tropical, tree-ripened fruits in Florida and there is concern in vineyards in the eastern USA, where sometimes they outnumber D. suzukii in traps. It is possible that Z. indianus can use fruit that has been oviposited in by D. suzukii, thus increasing damage and possibly complicating control measures.  In Canada, particularly Ontario and Quebec, winter temperatures may preclude establishment of African fig fly, and yearly re-infestation from the south would be necessary for it to show up in future years.  At all but one site, we found just 1-4 flies during late summer and early fall per site, so it will be interesting to see what happens to numbers this coming growing season.  In tropical and sub-tropical locations much larger populations have been detected the year following first detection.

For the past 1.5 years I have been working as a post-doctoral fellow at the University of Guelph with Rebecca Hallett on D. suzukii.  We are developing a push-pull management strategy using volatile plant compounds to repel and attract this pest.  With the occurrence of Z. indianus and possible reoccurrence  in larger numbers in the future, we may have a unique opportunity to study how two recent invaders using similar resources interact, and also, perhaps, a more significant challenge ahead of us  in developing management strategies.  If you are interested in this topic or have current or future experiences with Z. indianus, I and co-authors on the scientific note would appreciate hearing from you.  You can contact me at renkemaj@uoguelph.ca.

—-

Renkema J.M., Miller M., Fraser H., Légaré J.P. & Hallett R.H. (2013). First records of Zaprionus indianus Gupta (Diptera: Drosophilidae) from commercial fruit fields in Ontario and Quebec, Canada, Journal of the Entomological Society of Ontario, 144 125-130. OPEN ACCESS [PDF]

B. Staffan Lindgren is a professor of entomology at the University of Northern British Columbia, and 1st Vice-President of the Entomological Society of Canada. He has been the senior supervisor of 11 M.Sc. students and one Ph.D. student, co-supervisor of two M.Sc. students, and participated on more than 20 supervisory committees.

—————-

Recently I have been approached by several students asking about how to go about applying for graduate school. Furthermore, I and a colleague are doing a brownbag lunch discussion for the local student chapter of The Wildlife Society on this topic this week, and this got me thinking about what considerations a student should have. My conclusion is that you can break down the approach into a consideration of W5 (Why, Where, Who, What, and When) to optimize the chances of being successful.

In this post I will go over my thoughts on these W’s, and relate some of my own experiences, both as student and supervisor. I have not consulted the literature, but base this on personal experience alone, so you have to bear that in mind. For the record, I have not supervised a large number of graduate students, and all but one have been at the Master’s level. On the other hand, I have only “failed” as a supervisor once, which just means that I blame myself for the student’s failure to complete. On the other hand, I have also failed as a graduate student once, so I feel I have some relevant qualifications for writing this.

Why?

This question may seem somewhat redundant, but I believe it is an important first step. It is surprising how many students go into graduate school “to get a better job”. In my opinion, that is not a good reason at all. It is very possible, or in fact likely, that you can land a better job after completing a graduate degree, but there is no guarantee for advanced degrees automatically leading to better jobs. I have two examples. One of my more successful graduate students told me long after she graduated that she went into graduate school for this very reason. Somewhere along the way, she realized that she loved research, and her passion for it grew as a result. She subsequently carried on with a PhD, and now holds a very good research position. So in her case doing a graduate degree led to exactly what she set out to do to begin with, but it wasn’t graduate school per se that lead to her success, but rather her passion for what she was doing, along with some very hard work. My second example relates to my first, and failed attempt at graduate school. I was more worried about funding than topic, and opted to do a PhD in Endocrinology. I had really enjoyed my coursework in zoophysiology, so it seemed like a logical choice at the time. I was in a good lab, had a great colleague (who is now a professor with more than 300 authored or co-authored publications). As it turned out, it was not for me, however. The reasons were many, but a lack of passion for the subject area certainly contributed (see below).

Where?

Different institutions have varying reputations, and particularly if the ultimate goal is an academic position, it may make a difference whether you hold a degree from a major research university or primarily undergraduate teaching institution. However, there may be pros and cons with joining big labs. An obvious benefit is that a large institution is likely to have lots of infrastructure and resources. On the other hand, you may end up in a lab where your supervisor plays only a limited role in your actual supervision, i.e., you may be viewed more as a small cog in a large wheel than as an important individual. To avoid this, you have to ask the next question.

Who?

The supervisor is of critical importance in my opinion. All supervisors are not made equal, and they often have their own agendas and biases! Some may expect you to work things out for yourself, while others like to treat you like an employee. Depending on your personality, you may like one or the other, or somewhere in between. Highly productive, “big name” researchers are not necessarily the best supervisors! Moderately productive scientists at small institutions may provide a much better environment, particularly for graduate students lacking prior experience, e.g., Master’s students. I went into my first two graduate degrees (including the initial failed PhD in Sweden) pretty much blind. The endocrinology attempt was uncomfortable because of an internal schism between my supervisor and the head of the department, but other than that I was fortunate to get a very approachable and helpful supervisor. My supervisor for my Master of Pest Management and PhD degrees at Simon Fraser University was as good as they come; I learned an enormous amount from him, and model my own approach to supervision on that experience.  However, he did not suit everybody. The problem is matching your own needs and preferences with a suitable supervisor. I recommend all prospective graduate students to contact both former and current students of potential supervisors and ask what it is like to be a graduate student. I even recommend students expressing interest in me as a supervisor to do the same – I think of myself as a good supervisor, but I am clearly biased, and in control of the situation, whereas a graduate student would be dependent on my actions. Raise up front issues of support (not just salary, but field assistant, transportation, accommodation in the field, expectations). Ask about how the supervisor deals with authorship – believe it or not, there are supervisors who are prone to self-promotion. A good supervisor promotes his/her students, not themselves. Once you are in a graduate position, it is much more difficult to adjust things, so do your homework up front. I also recommend students to be frank with a potential (or existing) supervisor if there are issues. If you can’t communicate with your prospective supervisor before you are his/her graduate student, it is likely that you won’t be able to later. Sometimes this is just due to personality incompatibility, but it really doesn’t matter what the reason is if you end up in a bad situation. You are never going to go into a graduate position with 100% confidence that it will be perfect, but you can optimize the chances that it will be by doing some basic research.

A successful supervisor-student relationship can turn into a lifetime relationship: Staffan Lindgren (PhD 1982), Lisa Poirier(PhD 1995) and Dezene Huber (PhD 2001), gave back to their supervisor John H. Borden by successfully nominating him for an honorary doctorate at UNBC in 2009 in recognition of his enormous impact on forest insect pest management in British Columbia. Photo by Edna Borden.

A successful supervisor-student relationship can turn into a lifetime relationship: Staffan Lindgren (PhD 1982), Lisa Poirier(PhD 1995) and Dezene Huber (PhD 2001), gave back to their supervisor John H. Borden by successfully nominating him for an honorary doctorate at UNBC in 2009 in recognition of his enormous impact on forest insect pest management in British Columbia. Photo by Edna Borden.

What?

This is perhaps the most important decision you have to make, and it is closely linked to the first W (Why?). In my experience, the most successful students are not those who come in with the highest GPA or with the most funding (although it is easier to get accepted with those qualifications as it relieves the supervisor of some obvious burdens). Rather, they are the students with a burning interest in a specific type of project, or specific organisms. A great way to find your bearings is to get involved in research as an undergraduate student. When I was a PhD student, I had three undergraduate research assistants over the years. All three went on to get a PhD, one is now a research scientist with Forestry Canada, one is a conservation biologist with a consulting company (after Environment Canada was brought to its knees by the current government), and the third is a professor at a large institution in the United States. A number of students I have hired as undergraduate summer research assistants have successfully pursued successful careers. Decisions you make as a young person can profoundly affect your future. I went to the United States as a high school exchange student – without that experience I may have lacked the confidence to come to Canada for graduate school. As an undergraduate student, I participated in annual vole surveys and spider research, which taught me something about what types of activities I enjoy. When I first wanted to pursue graduate school, I failed to use that experience. My primary interest was entomology, but funding was hard to come by, so I opted for endocrinology because that graduate position came with a stipend. This decision turned out to be a huge mistake, and after 1 ½ years I had to give up. Essentially, I selected what to do for the wrong reason. (Thanks to my brilliant graduate student colleagues, I still ended up with five publications, which probably helped me get accepted at Simon Fraser University, so it wasn’t a complete waste of time, however).  At SFU, my MPM supervisor offered me a funded project that would have been applicable to Sweden, and he gave me 8 months to think about it. I eventually made the decision to take that on, and I have never looked back. Thus, once I reset the career compass to my original goals, I ended up where I always wanted to be, which is in forest entomology!

When?

Strangely, this question relates to both “Why” and “What”, although there is considerable variation among students in terms of what is right for each individual. In my experience, however, the most successful graduate students tend to have a little bit of “real world” experience before they pursue a graduate degree. In part, this may be because they have more experience, and therefore are more confident about their abilities, and possibly more aware of their weaknesses than someone fresh out of an undergraduate degree would have. These individuals have also had time to formulate what they are really passionate about, and in my mind, passion is the most important ingredient in a successful graduate degree. Yes, you need some basic skills (communication (written and oral), quantitative skills), a modicum of intelligence, and lots of patience for endless tedium (most research is 90% tedium, 5% frustration, and 5% elation), but you don’t have to be an A+ student. As a graduate student, a passionate B student will do better than a moderately interested A+ student any day. You would be surprised how many professors and successful scientists were relatively average in high school. If the timing is wrong, you may not be happy. For example, when I first tried to pursue graduate school and ended up in the wrong program, I could have waited 2-3 years and I may have had perfect opportunities in Sweden as a huge project on insect pheromones was initiated a year after I went to Canada. I had in fact contacted several of the professors that led that project, but at the time they didn’t have the funds in place.

I mentioned at the beginning that I failed as a supervisor once. This was a combination of not matching the student with an appropriate topic, and personal incompatibility. Both resulted from inexperience, as it was one of my very first graduate students. Even supervisors learn from experience.

I hope these musings are helpful you decide to pursue a graduate degree. Good luck!

By Chris Buddle, Editor of the Canadian Entomologist

———————–

I am pleased to present the “Editor’s Pick” manuscript for the current issue of The Canadian Entomologist. This pick was a paper by Bob Lamb, Patricia MacKay and Andrei Alyokhin, titled “Seasonal dynamics of three coexisting aphid species: implications for estimating population variability

I had always admired the ongoing work on aphids, spearheaded by Bob and Pat. Their work is always relevant, meticulous, framed in an important and broader ecological context, and they have a ‘model system’ to work with. This is the kind of researcher many more junior entomologists look up to.  The current paper is no exception. In this work, Bob and Pat joined up with Andrei Alyokhin and present a careful study of population variability and effectively use this metric to better understand population dynamics over time.  For me, I see much value in this approach, and can see how this kind of work could effectively be used in teaching students about how to best describe, understand, and quantify population dynamics.  I’m also inspired to see long-term data with arthropods. These kinds of data are so useful, but relatively rare. It’s great to see Bob, Pat and Andrei publish thoughtful and important work using such data.  I may also look around some old filing cabinets at my University…

Bob was kind enough to answer a few questions about this work, with input from his co-authors.

What inspired this work?

When Pat MacKay and I were anticipating eventual retirement from paying jobs as entomologists, we decided to begin a study of an aphid population that could be pursued as long as we could walk trails and count aphids. Our goal was to figure out why aphid populations seem to be so unstable. Eventually we wrote up our findings on the stability of one native species over the first 10 years of a study we hope will go on for at least another 10 years. A few years ago we realized we needed comparative data, but were too old to start on a 20-year study of another aphid species. The solution was to write to colleagues who also had long-term data sets, to see if they were interested in looking at their data from this perspective. So far the colleagues we have contacted have been enthusiastic collaborators. The first was Andrei Alyokhin our coauthor on the current paper. He gave us access to 60 years of data on three aphid species. The first paper on the stability of these aphids was published in the Canadian Entomologist two years ago. The current paper extends that earlier work, looking now at how aphid seasonal biology affects our estimates of stability.

Bob Lamb, sporting "aphid hunting gear"

Bob Lamb, sporting “aphid hunting gear”

What do you hope will be the lasting impact of this paper?

We hope that this paper will help convince other researchers that Joel Heath’s metric, PV, which we use to quantify population variability, is a robust way to quantify one aspect of the stability of populations. If more researchers adopt this metric, ecologists will have a much greater opportunity to apply a comparative approach and identify factors that contribute to stability or instability of populations.

Where will your next line of research on this topic take you?

Pat MacKay and I continue to extend our time series on the abundance of a native aphid, and are now focusing more on the ecological processes that cause our five populations to rise and fall. We also hope to expand our studies of stability to still more aphid species, but also species with very different life histories. At the moment I am working with a colleague, Terry Galloway, University of Manitoba, on several time-series of ectoparasite abundance on birds.

Do you have any interesting anecdotes about this research?

One of the most interesting aspects of the work on aphids from potatoes is the source of the data – 60 years or more of weekly aphid counts. The data for the early years were discovered by Andrei Alyokhin in an abandoned filing cabinet stored in a barn at the University of Maine. Andrei was a new faculty member at the time exploring his research facilities. His predecessors had maintained meticulous records of aphid densities in potato plots since soon after World War II. Andrei was quick to recognize the value of this data, and more importantly recognized the need to go on collecting the data in the same way. The result is an amazing data set, one of the longest continuous records at one location of the dynamics of multi-voltine species.

Lesson 1: newly-hired entomologists should begin their careers by searching old filing cabinets.

Lesson 2: meticulous long-term records can be invaluable, sometime in ways that you might not anticipate.

Andrei discovering data in old filing cabinets

Andrei discovering data in old filing cabinets

Lamb R.J., MacKay P.A. & Alyokhin A. (2013). Seasonal dynamics of three coexisting aphid species: implications for estimating population variability, The Canadian Entomologist, 145 (03) 283-291. DOI:

By Chris Buddle, editor of The Canadian Entomologist

—————————-

The Canadian Entomologists’ latest issue is devoted to Arctic Entomology, with guest editors Derek Sikes and Toke T. Høye putting together an excellent suite of papers on this topic.  This is a very timely issue – there is an incredible amount of Arctic entomology happening around the world, and the Arctic is an area that is undergoing rapid environmental change.   It’s good that scientists are paying attention, and that entomologists are doing high quality research in the north.

Deciding on an “editor’s pick” for this issue was difficult as there were many excellent papers to choose from.  However, I ended up selecting Gergely Várkonyi and Tomas Roslin’s paper titled “Freezing cold yet diverse: dissecting a high-Arctic parasitoid community associated with Lepidoptera hosts”.   These authors, from Finland, have presented a very nice study about some food-web dynamics occurring in Zackenberg, Greenland  – a truly high Arctic field site, and one that has a remarkable history of long-term ecological monitoring.  Their work is focused on unraveling some of the amazing interactions between Lepidoptera and their parasitoids, and this paper provides a “systematic effort to characterise the high-Arctic Hymenoptera and Diptera parasitoid community associated with Lepidoptera hosts”.   This is a great paper, and hopefully continues to inspire continued efforts to study entomology at high latitudes.

Greenlandic field station

I asked the authors some questions about their work and they kindly provided in-depth answers:

Q1:  What inspired this work?

TOMAS: What got me interested in Arctic predator-prey dynamics was the work of my friend Olivier Gilg. His exploration of the predator-prey dynamics among collared lemmings and their few and selected enemies of Northeast Greenland made me realize that in a species-poor environment, the impact of individual species on each other will be oh-so-much easier to disentangle than among the zillions of interactions typical of tropical and even temperate communities. Here if anywhere you can actually work out both the structure and inner workings of full food webs – which is the very the idea that we have now realized in our study. (And well, from a less scientific point of view, after visiting Northeast Greenland I also realized that this is the most beautiful area of the globe, and that there is nowhere else that I would rather work.)

GERGELY: I have been interested in northern insects, especially hymenopteran parasitoids, since a very long time. I did my PhD in a subarctic environment in Finnish Lapland, with the main focus on host-parasitoid population dynamics between periodic moths and their enemies. I first encountered Greenlandic ichneumonids when my former teacher in ichneumonid taxonomy – and current friend – Reijo Jussila worked on the descriptions of some new species from the Scoresbysund area in Northeast Greenland. More than a decade later, Tomas asked me to identify some samples from Traill Island (NE Greenland), where he had initiated a pilot project on Lepidoptera-Hymenoptera food webs. The next step was when he invited me to join his project about to be launched at Zackenberg. The rest is history…

Q2:  What do you hope will be the lasting impact of this paper?

TOMAS: What I hope that we have achieved are three things: to expose the importance of versatile biotic interactions even in a harsh arctic environment, to reveal the massive effort needed to convincingly dissect even a simple food web, and to establish the baseline structure of a food web facing imminent climate change.

GERGELY: Could not say it any better. I can only add that I hope our thorough overview of the taxonomy and natural history of individual parasitoid species will contribute to getting a better understanding of who is who and what roles each species play in this arctic scene.

flowers in containers

Q3:  Where will your next line of research on this topic take you? 

TOMAS: While we have now figured out the structure of the Lepidoptera-parasitoid web, we should remember that this is but a small module of the overall food web of the region. Our current work aims at expanding/zooming out from this core web towards the full food web of the region, which should actually be more realistically doable here than anywhere else on the globe (see above). In this work, we try to make maximal use of modern molecular tools, offering new resolution to documenting trophic interactions.

GERGELY: Apart from the community ecology goals of this project, we will further continue to update what is known about the parasitic wasp fauna of Greenland. I am focusing on the Ichneumonidae, the single most species-rich family of Hymenoptera in both Greenland and the entire World. By combining morphology and molecular methods, I attempt to clarify species boundaries and detect potential cryptic species. The ultimate goal of this research is to compile a modern taxonomic overview of the Ichneumonidae of Greenland.

Q4: Any amusing anecdotes about this research?

TOMAS: Gergely used to wear a handy hiking suit of light coloration. One day he was almost shot as a polar bear after sneaking up on an unsuspecting colleague in the field.

GERGELY: Well, first of all I was not sneaking, just looking for adult wasps in a safe distance from this colleague of ours. She thought my net was a giant paw of a polar bear (!) and she was really scared for a short moment. But she was definitely not about to shoot me!

Mountain

By Chris Buddle (McGill University) & Dezene Huber (University of Northern BC)

————–

Last autumn there was quite an interesting discussion on twitter among some entomologists in Canada about the ‘job search’ – more specifically focused on the process of seeking tenure-track academic appointments.  Many of us shared our sob stories, and although the time, place and characters varied, the common element was REJECTION.  Those of us who currently are lucky enough to hold faculty appointments remember the rejection to success ratio, and some of us still have stacks of rejection letters.  While most of us really enjoyed the academic freedom that came with working as a postdoc, the job-search process was more often than not discouraging and deflating, and a really difficult time in our lives.

Towards the end of the PhD program, most of us are riding high – our papers are getting published, we are truly ‘experts’ in our fields of study, we are being congratulated, buoyed by our peers and mentors, and we are ready to take on the world.   We found ways to get a post-doc and perhaps traveled to a different country for additional experience, with a sense of hope, optimism, and enthusiasm for the next stage of our careers.

Then, like the world supply of helium, our hopes were quickly diminished.

“I will easily get a job interview at THAT University”.

Nope.  Not even an interview.

“Perfect – that job advertisement was MADE for me – they will hire me.  It’s a perfect fit”.

Nope. A mass e-mail rejection letter instead.

“I’m the GREATEST in my field of study.  Universities will be asking me to apply”

Nope.  That never happens.

I’m sure that I’ll be seriously considered for this position

Nope. The rejection letter came back saying that there were more than 400 applicants for the position.

Even if I don’t get the job, I’ll be able to get feedback from someone on the committee.”

Nope. It’s highly unlikely that, among the 400 applicants, anyone on the committee even remembers you.

There are really two ways to look at this.  It is possible to get discouraged and frustrated, and give up hope OR it’s possible to see that persistence can pay off and eventually the right job will come along, and you will be competitive.  Sure, the opportunities have to be there, but that kind of timing and ‘luck’ isn’t something you can control.

Here are a few pointers that will hopefully help you think about that tenure-track job search, and give you a sense of optimism:

  • It will take a huge dose of patience and persistence, but there ARE tenure-track jobs out there for people with Entomological interests, even in Canada. Recently, Manitoba hired an entomologist, and University of Ottawa just hired an assistant professor on the evolution of plant-pollinator interactions.
  • University professors do eventually retire! (…Although it needs to be noted that the reality in the current economy is that their positions are not always replaced)
  • You don’t have to restrict your options to only University positions.  We know of faculty members who worked in private companies, or in government, and made a lateral transfer, eventually, to academia.  Your holy grail may be a tenure-track job, but other opportunities are equally rewarding and could eventually get you a tenure-track job. Or you may find that life “beyond the ivory tower” is much to your liking anyhow. In fact, you may be interested in the advice column at Chronicle.com by that very name.
  • Be creative with your CV.  There are relatively few jobs for entomologists, sensu stricto, but there are jobs for evolutionary biologists, ecologists, or other more ‘general’ disciplines (Look: Concordia recently held a competition for a community and ecosystem ecologist!)  Re-work your cover letters and CV to reflect your potential in these jobs, and that you use insects as ‘model organisms’. And always tailor your cover letter and CV to any job for which you apply. Don’t just send in the same material to every search committee. Search committees are looking for that elusive thing that we call “fit.”
  • Keep your eye on the ball:  to get that coveted university position, the peer-reviewed publication remains the MOST IMPORTANT item on your CV.  Publish, publish, publish. During this stage of your career, keep the focus on that part of the research process. In particular, enjoy the fact that, as a postdoc, you are relatively free to conduct research and publish without many of the other responsibilities (e.g., teaching, administration) that will come with a tenure-track post.
  • Be realistic. If a job ad states that the committee is looking for an acarologist specializing in the mites of toucans, and you are an acarologist who studies toucan mites, then you have a good chance of landing an interview. If the job ad asks for a “terrestrial ecologist working at any scale from microbial to landscape” and you fit somewhere in there, chances are so do a few hundred other recent graduates.
  • When you see something that looks potentially appropriate for you, apply. Rejection is painful but costs nothing; not applying to something that might have worked out is doubly painful.  People who have agreed to write you letters of recommendation will be patient with you (if they are not, perhaps they are not the right people to give you a letter…?)
  • Have another postdoc or your mentor read through your application material. Chances are your mentor has been on a few search committees and can give you useful tips.
  • Every time you apply for a job, consider it a chance to improve your application material.
  • When you do land an interview, prepare for it like there’s no tomorrow. You are a researcher, do your best to figure out everything that you possibly can about the department to which you are applying and, even more, the personalities that make up that department.  Once you get an interview, this means your CV is strong enough, and the job interview is about the ‘fit’.
  • OK, to be fair, there are other tricks to success in academia.
  • Landing an academic position is not always going to be in the cards for everyone. It is best to have alternate plans so that you don’t get stuck in the so-called postdoctoral holding pattern for years and years. At least one of us (DH) committed to himself to start to explore alternate options at the five year mark after walking the convocation stage. Have a plan B. Your Plan B might actually turn out better than your Plan A in the end.
  • Rejection in terms of tenure-track jobs is really just a warm-up to the continual sense of rejection you will feel if you do end up working as a Professor.  You might as well get used to it.  This is not a statement to bring on doom and gloom: it’s the reality.  You must develop broad shoulders.

Rejection is a fundamental and core part of the academic life: The publication process is becoming so difficult that you can pretty much assume that your paper will get rejected the first few times around (check out this paper about rejection rates…).  Funding agencies are cash-strapped, and it’s getting harder and harder to find ways to fund research projects.  High caliber graduate students will ‘shop around’ for the best graduate program, and will often reject your laboratory. Be a practitioner of academic kung fu – use the weight of rejection against rejection itself by learning from it and applying it to your next attempt.

Depressed yet?

Don’t be.  A tenure track has so many advantages, and these far outweigh the annoying stream of rejections. And the other options available to a bright, young researcher are often as appealing (and usually pay more) than being on the tenure track anyhow.  ..but that’s a topic for another post.

by Christopher Buddle, McGill University

————–

As the Editor-in-Chief of The Canadian Entomologist, I have the pleasure of seeing all papers move through the publication process, from first submission to approval of the final proof.  This places me in a position to fully appreciate the incredible entomological research occurring around the world.  As one way to promote some of the great papers within TCE, I have decided to start a series of blog posts titled “Editor’s Pick” – these are papers that stand out as being high quality research, and research that has broad interest to the entomological community.  I will pick one paper from each issue, and write a short piece to profile the paper.

For the first issue of the current volume (145), I’ve picked the paper by Kathleen Ryan and colleagues, titled “Seasonal occurrence and spatial distribution of resinosis, a symptom of Sirex noctilio (Hymenoptera: Siricidae) injury, on boles of Pinus sylvestris (Pinaceae)“.   Sirex noctilio is a recently introduced species in Canada, and is a woodwasp that we need to pay attention to.   As Kathleen writes, “unlike our native species of woodwasps, it attacks and kills living pines” and because of this, we must strive to find effective ways to monitor the species.  One potential approach is to look for signs of resinosis, or ‘excessive’ outflow of tree sap and resins from conifers.  The goal of this work was to specifically assess “the spatial and temporal distribution of resin symptoms of attack to optimise sampling“.  The work involved Kathleen spending a LOT of time in the field, observing evidence of damage to trees, and assessing timing of resinosis relative to other damage to pine trees as related to woodwasps.  In the end, Kathleen was able to confirm that in most infested trees, the appearance of resin was a meaningful detection method.  This is a very practical paper, and very useful towards finding the best methods to detect this exotic species.

Sirex noctilio female - Photo by K. Ryan

Sirex noctilio female – Photo by K. Ryan

I asked Kathleen a few questions about this paper and the context of the work.

Q: Kathleen, what first got you interested in this area of research?

A: I became interested in studying Sirex’s interaction with other subcortical insects. Sirex was recently detected in North America at the time and we didn’t know much about it here including how, where and when to find it  – all of which were essential in planning research about insect interactions. So this study was my starting point – my “getting to know Sirex” study.

Q:  What do you hope will be the lasting impact of this paper?

A: This paper is the result of the many hours of field observations that helped me to become more familiar with Sirex. Since its really basic research, I hope that this paper might be a useful starting point for other people beginning to work with Sirex.

Q:  Where will your next line of research on this topic take you?  

A: Currently, I’m studying another invasive wood-borer, but I’d like to work with Sirex again – it’s a really interesting and unique insect biologically and ecologically. I’m especially interested in studying Sirex community ecology in its native, European, range to see how it compares to North America.

This is truly an important area of study, and I do look forward to seeing more of Kathleen’s papers in TCE.

Finally, I asked Kathleen about any amusing anecdotes about the research, and she shared this wonderful story with me:

The first day we worked together, my PhD advisor Peter de Groot, dropped me off at a forest site with instructions to only observe and collect absolutely no data. I had been in the forest for only a few moments, when a female Sirex landed right in front of me. So being an entomologist, naturally I caught her. A couple of hours later, still holding her, I met back up with Peter and sheepishly admitted that I had caught some “data”. Thinking it fantastic, from that point forward he told everyone that Sirex had picked me as her project.

Looking for wood wasps - Photo by K. Ryan

Looking for woodwasps – Photo by K. Ryan

I believe that these kinds of stories behind the research make Entomology more accessible and real, and help us appreciate the human element of scientific research.

As a final note, the entomological community was very saddened by Peter de Groot’s death in 2010.  His legacy to Canadian Entomology is still very strong.

A special thanks to Kathleen for answering a few questions, and sharing insights into the first ‘Editor’s pick’ for The Canadian Entomologist

———-

Reference:  Ryan, K, P. de Groot, S.M. Smith and J. J. Turgeon.  Seasonal occurrence and spatial distribution of resinosis, a symptom of Sirex noctilio (Hymenoptera: Siricidae) injury on boles of Pinus sylvestris (Pinaceae). The Canadian Entomologist 145: 117-122. Link.

Myrmica brevispinosa, the short-spined ant

By Dr. Staffan Lindgren, University of Northern British Columbia

————————

When teaching Invertebrate zoology, entomology or forest entomology, I am regularly asked by students if they can use common names. Mostly this request is precipitated by the perceived difficulty of memorizing, let alone pronouncing, Latin names. I am fairly relaxed about these things, particularly with forestry students, who are quite unlikely to become entomologists no matter how you define that term.  It should be clarified that forest entomology is taught within a Disturbance Ecology and Forest Health course at my institution (UNBC), with diagnostics in half of a separate lab course. My stock answer is thus that they may use common names as long as the name clearly defines the species they are referring to.

Foresters are prone to colloquial terms, whether with respect to insects, trees or other organisms. For example, subalpine fir (Abies lasiocarpa) is called balsam by many, if not most foresters in BC, even though it is a distinct species from balsam fir (Abies balsamea) of eastern North America. Similarly, Pissodes strobi, the white pine weevil, is called spruce weevil (a legacy of the days when this weevil was considered three separate species, two of which primarily infest different spruce species in the west) or simply leader weevil.  The reason, supposedly, is that it is the wood quality that matters in terms of trees, and the type of damage with respect to insects. The consequences of being a bit loose with the taxonomy of a particular species may therefore seem fairly inconsequential in forestry.

Incidentally, our forestry students have even more to worry about when it comes to pathology, which they have to learn at the same time, as the same biological organism often has two completely different Latin names (including genera) depending on whether it is the sexual or asexual form (why this remains an accepted practice is beyond me), and they often do not have common names. Add the fact that fungal species seem to change name more often than I change vehicles (I was going to write ‘shirt’, but didn’t want to gross anyone out making you think that I wear the same shirt for years), and it becomes rather a nightmarish proposition for the poor students.

When it comes to entomology in general, however, common names are most commonly used in casual conversation, particularly with members of the public. For entomologists this is usually not a problem, but for non-entomologists it can be very confusing.  For example, colloquial use of ‘bug’ is pretty much anything that is small and crawls or flies around. Taxonomically it is quite specific (Hemiptera: Heteroptera). Ladybugs (Coleoptera: Coccinellidae) are perhaps the most recognizable insects to people in general, but they are clearly not bugs. Plant lice (Aphidoidea and Phylloxeroidea), bark lice (Psocoptera) and body lice (Phthiraptera) represent three vastly different taxonomic groups. In addition, if the non-louse groups above were to be correctly written to show that they are not Phthirapterans, there should be no space – however for these common names that principle is never applied as far as I can tell. It is to differentiate dragonflies, damselflies, stoneflies, mayflies, whiteflies etc. from the true flies. For example, a dragon fly, if there were such a thing (and probably there is somewhere – perhaps a decapitating fly (Phoridae) comes close enough to earn that epithet!) would be a dipteran, whereas a dragonfly is not. How is a non-entomologist supposed to know that (assuming that it is important to anyone except us entomophiles)? Then we can go on to more obvious misnomers such as ‘white ants’, which aren’t ants (Hymenoptera: Formicidae) at all, but termites (Isoptera).

Going back to forest entomology, one can have all kinds of fun with some common names, the origin of some could serve as fodder for endless speculation. For example, when discussing the problems with common names, I ask my students what they think a sequoia pitch moth (Synanthedon sequoiae)(Lepidoptera: Sesiidae) would attack. The correct answer is naturally “mostly lodgepole pine, but not sequoia”. Similarly, the Douglas-fir pitch moth (Synanthedon novaroensis) commonly breeds in lodgepole pine, but as far as I know not in Douglas-fir. I then go on to western spruce budworm, which as the name does not imply primarily attacks Douglas-fir.

Myrmica brevispinosa, the short-spined ant

Myrmica brevispinosa, the short-spined ant

Clearly one cannot expect members of the public to keep track of Latin names of insects, so common names are here to stay. I was interested to find in a book I recently purchased (Ellison et al. 2012) that the authors had invented common names for every species by essentially translating the Latin species epithet. That creates an interesting situation vis-à-vis the attempt of entomological societies to standardize common names (http://www.esc-sec.ca/ee/index.php/cndb; http://www.entsoc.org/common-names). Nevertheless, some ants simply retained their genus name, e.g., Harpagoxenus canadenis became “The Canadian Harpagoxenus” (not sure why, as they named the genus “The robber guest ants”), Formica hewitti became “Hewitt’s ant”,  Myrmica brevispinosa (the species in the photo accompanying this article) is called “The short-spined ant”, and perhaps my favourite Lasius subglaber was named “The somewhat hairy fuzzy ant”. Common names aren’t generally that innovative, but Latin names certainly can be.

Many years ago May Berenbaum (1993) wrote a column on this topic. If students would all read Dr. Berenbaum’s eminently humorous take on how insects get named, they would without a doubt get a new appreciation for both Latin names and their creators, and perhaps feel less trepidation about memorizing them. Then not only true blue entomologists would be tempted to buy a bumper sticker that read “Sona si Latine loqueris” (Honk if you speak Latin) (Unverified from http://www.latinsayings.info/).

Berenbaum, M. 1993. “Apis, Apis, Bobapis….”, American Entomologist 39: 133-134.

Ellison, A.M., N.J. Gotelli, E.J. Farnsworth, and G.D. Alpert. 2012. A field guide to the ants of New England. Yale University Press, New Haven and London, 398 pp.