(English version here)

Cet article fait partie d’une série continue de rassemblement de la recherche entomologique canadienne (Canadian Entomology Research Roundups). Voici ce que les étudiants de cycle supérieur canadiens ont fait récemment:

De la part des auteurs:

Finn Hamilton (University of Victoria)

C’est bien connu que la majorité des insectes sont hôtes à des bactéries symbiotiques qui ont de profondes conséquences sur la biologie de l’hôte. Dans certains cas, ces symbioses peuvent protéger l’hôte contre de virulents parasites et pathogens, même si dans la plupart des cas planent encore un mystère sur la façon dont les symbionts réussissent à atteindre cette défense. Dans cet article, nous avons démontré qu’une souche de la bactérie Spiroplasma qui protège son hôte drosophile contre un nématode parasitaire virulent encode une toxine sous forme de protéine. Cette toxine semble attaquer l’hôte du nématode durant une défense induite par Spiroplasma. Ceci représente, à ce jour, une des démonstrations les plus claires des mécanismes sous-jacents de la symbiose promouvant la défense des insectes. Lien vers l’article

Drosophila

Voici une mouche Drosophila falleni infecté par le nematode, Howardula aoronymphium, dont Spiroplasma  la protège. Crédit phot: Finn Hamilton.

Lucas Roscoe (University of Toronto)

L’agrile du frêne (Agrilus planipennis Fairmaire) est un buprestide ravageur s’attaquant aux frênes d’Amérique du Nord. Dans l’optique du développement de plans de gestion à long-terme de l’agrile du frêne, plusieurs projets détaillant la biologie et l’écologie de parasitoïdes indigènes peu étudiés auparavant ont été amorcés. Un des projets s’intéresse à la séquence de reproduction d’un parasitoïde, Phasgonophora sulcata Westwood. Plusieurs insectes entreprennent des actions répétées avant la reproduction qui sont souvent induites par des phéromones. Les résultats de cette étude sont la description de la séquence de reproduction de P. sulcata et la preuve que les phéromones produites par les femelles sont à la base de ses actions. Liens vers l’article

sulcata

Phasgonophora sulcata, un parasitoïde important de l’agrile du frêne. Crédit photo: Lucas Roscoe.

Marla Schwarzfeld (University of Alberta)

Les guêpes parasitiques du genre Ophion (Hymenoptera: Ichneumonidae) sont presqu’entièrement inconnu dans la région Néarctique, où la majorité des espèces ne sont pas décrites. Dans cette étude, nous publions la première phylogénie moléculaire de ce genre, basé sur les régions COI, ITS2, and 28S. Bien que nous mettions l’accent sur les spécimens Néarctique, nous avons aussi inclus des représentants des espèces les plus connus de de l’ouest de la région Paléarctique et plusieurs séquences d’autre régions géographiques. Nous avons délimités 13 groupes d’espèces, la plupart étant reconnu pour la première fois dans cette étude. Cette phylogénie nous fournit un cadre essentiel qui pourra, nous espérons, inspirer les taxonomistes à divisier et conquérir (et décrire!) de nouvelles espèces dans ce genre qui présente de grands défis morphologiques. Liens vers l’article

Ophion

A parasitoid wasp in the genus Ophion. Photo credit: Andrea Jackson

Seung-Il Lee (University of Alberta)

Seung-Il Lee et ses collègues (University of Alberta) ont trouvé que de larges territoires de rétention (> 3.33 ha) minimisent “l’effet de bordure” négatif sur les coléoptères saproxyliques dans les peuplements boréals d’épinette blanche. Liens vers l’article  Billet de blogue (EN)

beetle

Un coléoptère saproxylique, Peltis fraterna. Crédit photo: Seung-Il Lee.

Paul Abram (Université de Montréal)

La relation entre la taille des insectes et certains traits distinctifs (tel que la longévité, la fécondité, …) a été largement étudié, mais l’effet additionnel de la taille sur les traits comportementales sont moins bien connus. En utilisant le parasitoïde d’oeuf  Telenomus podisi Ashmead (Hymenoptera: Platygastridae) et trois de ses hôtes punaises comme système modèle, nous avons démontrés que la différence de taille était associé a un changement dans la plusieurs traits distinctifs (longévité, masse d’oeufs, taille des oeufs), mais aussi de certains traits comportementales (vitesse de marche, taux d’oviposition, taux de marquage des oeufs). Nos résultats mettent en relief comment la phénotype complet (comportement et traits distinctifs) doivent être considéré quand nous évaluons l’association entre la taille et la condition physique. Liens vers l’article

Telenomus

Le parasitoïde Telenomus podisi parasitisant les oeufs de la punaise Podisus maculiventris. Crédit photo: Leslie Abram.

Delyle Polet (University of Alberta)

Les ailes de insectes ont souvent des éléments directionnels rugueux – comme des poils et des écailles- qui perdent des gouttes d’eau dans le sens des éléments, mais pourquoi ces éléments ne pointent pas toujours dans la même direction? Nous avons proposé que trois stratégies sont en jeu. Les gouttes pourrait être (1) évacuer loin du corps, (2) être perdues aussi vite que possible et (3) évacuer de “vallées” formés entre les veines des ailes. Un modèle mathématique combinant trois de ces stratégies concorde avec l’orientation des poils sur un taon (Penthetria heteroptera) assez bien et pourrait être appliqué à d’autres espèces ou à des matériaux inspirés par la biologie. Liens vers l’article

Winghairs

Poils sur l’aile d’un taon (Penthetria heteroptera). Crédit photo: Delyle Polet.

Résumés bref de recherche

Taxonomie, Systématique, and Morphologie

Thomas Onuferko du laboratoire Packer à York University et ses collègues ont réalisé un vaste étude sur les espèces d’abeilles dans la région de Niagara, Ontario. Onuferko et al. ont collecté plus de 50 000 abeilles et ont découvert 30 espèces qui n’avait pas été rapporté dans la région. Liens vers l’article

Christine Barrie et ses collègues ont signalé que des mouches de la famille Chloropidae sont associés aux phragmites au Canada. Lien vers l’article

Comportment et écologie

Blake Anderson (McMaster University) et ses collègues ont étudié l’hypothèse du découplage du comportement social et de l’activité dans les mouches larvaires et adultes. Lien vers l’article

Susan Anthony du laboratoire Sinclair à Western University, ainsi que Chris Buddle (McGill University), ont déterminé que le pseudoscorpion de Béringie peut tolérer tant les basses températures et l’immersion. Lien vers l’article

Une étude par Fanny Maure (Université de Montréal) démontre que le status nutritionnel d’un hôte, la coccinelle maculée (Coleomegilla maculata), influence le destin de l’hôte et condition physique du parasitoïde. Lien vers l’article

Est-ce que la connectivité est la clé? Des laboratoires Buddles et Bennet à l’Université McGill et du laboratoire James à l’Université de Montréal, Dorothy Maguire (Université McGill) et ses collègues ont utilisé la connectivité du paysage et les insectes herbivores pour proposer un cadre pour examiner les compromis associés aux services ecosystèmiques. Lien vers l’article

 Alvaro Fuentealba (Université Laval) et ses collègues ont découvert que différentes espèces d’arbres hôtes montrent des variations à la résistance naturelle à la tordeuse du bourgeon de l’épinette. Lien vers l’article

Gestion des insectes ravageurs

Rachel Rix (Dalhousie University) et al. ont observé qu’un stress modéré induit par l’insecticide pour augmenter la reproduction et aider les pucerons a mieux se débrouiller avec le stress subséquent. Lien vers l’article

Lindsey Goudis (University of Guelph) et ses collègues ont découvert que la meilleure façon de contrôler Striacosta albicota (Smith) est d’appliquer de la lamba-cyhalothrine de la chlorantraniprole 4 à 18 jours après l’éclosion de 50% des oeufs. Lien vers l’article

Matthew Nunn (Acadia University) et ses collègues ont documenté la diversité et densité d’importantes espèces ravageuses des bleuets sauvages en Nouvelle-Écosse. Lien vers l’article

Physiologie et génétique

Est-ce que l’heterozygositie améliore la symétrie de Xeromelissa rozeni?  Margarita Miklasevskaja (York University) et ses collègues ont testé cette hypothèse dans leur plus récent article. Lien vers l’article

Xeromelissa

Un male Xeromelissa rozeni. Crédit photo: Margarita Miklasevskaja.

Jasmine Janes, récemment graduée de University of Alberta, et d’autres ont exploré les systèmes de reproduction et de structure génétique à petite échelle pour la gestion efficace du Dendroctone du pin ponderosa. Lien vers l’article

Du laboratoire Sperling à University of Alberta, Julian Dupuis et Felix Sperling ont examiné l’interaction complexe de l’hybridation et de la spéciation. Ils ont caractérisé le potentiel d’hybridation dans un groupe de Papilonidae. Lien vers l’article

Marina Defferrari (University of Toronto) et ses collègues ont identifié un nouveau peptide similair à l’insuline dans Rhodnius prolixus. Ses peptides sont impliqués dans l’homéostasie métaboliques des lipides et carbohydrates. Lien vers l’article

Techniques

Crystal Ernst (McGill University) et ses collègues ont collecté des coléoptères et des araignées dans différents habitats du Nord. Ils ont trouvé que la diversité des coléoptères et des araignées par habitat et type de trappes. Lien vers l’article


Nous continuous à aider à divulguer les publications des étudiants de cycle supérieur à la plus vaste communauté entomologique grâce aux rassemblement de recherche. Si vous avez publié un article récemment et souhaitez le divulguer, envoyez-nous un email à entsoccan.students@gmail.com.  Vous pouvez aussi nous envoyer des photos et une courte description de votre recherche dans le but apparaître dans notre prochain rassemblement de recherche.

Pour des mises à jour régulières sur la nouvelle recherche entomologique canadienne, vous pouvez joindre la page Facebook de ESC Students ou nous suivre sur Twitter @esc_students (EN) ou @esc_students_fr (FR).

By B. Staffan Lindgren, Professor Emeritus

A while back, a paper accepted by The American Statistician entitled “The ASA’s statement on p-values: context, process, and purpose” was posted to the American Statistical Association website. The gist of the paper was that many disciplines rely too much on the p-value as the sole indicator of research importance. Not surprisingly, the paper received considerable attention.

Over my career, I had a love-hate relationship with statistics, knowing just enough to be dangerous, but not enough to really understand what I was doing. Consequently I relied on packaged software and/or colleagues or students who were more quantitatively minded than myself. For example, I generally made sure that a graduate student committee had at least one member with some strength in statistics to make sure I would not leave the candidate stranded or led astray. So if you read my thoughts below, keep in mind that I tread on very thin ice here. I fully expect some disagreement on this, but that is the way it is supposed to be. Ultimately it is your responsibility to understand what you are doing.

The approaches and tools for statistical analysis have changed a lot since my student days, which was at the dawn of mainframe computers for general use, on which we could use a software package called Textform rather than typing the thesis on a type writer as I (read “a secretary I hired and almost drove to depression”) did for my masters. My first visit to a statistical consultant at Simon Fraser University ended with the advice that “This data set can’t be analyzed, it contains zero values.” The software of choice was SPSS, which did not allow for any complexity, so I did a fair bit by hand (which might have been a good thing since it forced me to think about what I was doing, but certainly did not prevent errors). Later in my career it was sometimes a struggle to decide among differing opinions of statisticians what was and was not appropriate to use, but with a little help from my friends I think I managed to negotiate most of the pitfalls (no pun intended) fairly well.

The author with his eponymous insect trap, sometime after struggles doing statistics with room-sized computers. Photo: Ron Long

The statistic-phobic author with his eponymous insect trap, preparing to gather data and test hypotheses. Photo: Ron Long.

One of the issues with our reliance on p-values is that it is tempting to do post-hoc “significance-hunting” by using a variety of approaches, rather than deciding a priori how to analyze the data. Data that show no significance often remains unpublished, leading to potential “publication bias”. In part this may be the result of journal policies (or reviewer bias), which tends to lead to rejection of papers reporting ‘negative’ results. We have also been trained to use an experiment-wise alpha of 0.05 or less, i.e., a significant result would be declared if the p-value is lower than 0.05. There are two problems with this. First, it is an arbitrary value in a sense, e.g., there really is no meaningful difference between p=0.049 and 0.051. Furthermore, the p-value does not really tell you anything about the importance of the result. All it can do is give some guidance regarding the interpretation of the results relative to the hypothesis. I have tried to make students put their research in context, because I believe the objective of the research may dictate whether or not a significant p-value is important or not. I used to work in industry, and one of the reasons I left was that recommendations I made based on research were not always acted upon. For example, pheromones of bark beetles are often synergized by various host volatiles. But whether or not they are may depend on environmental factors. For example, just after clear cutting the air is likely to have high levels of host volatiles, thus making any host volatile added to a trap ineffective. However, a company may make money by selling such volatiles, and hence they would tend to ignore any results that would lead to a loss of revenue. On the other hand, one could argue that they have the customers’ best interest in mind, because if host volatiles are important under some circumstances, it would be detrimental to remove them from the product.

This leads to my thoughts about the power of an analysis. The way I think of power is that it is a measure of the likelihood of finding a difference if it is there. There are two ways of increasing power that I can think of. One is to increase the number of replications, and the other is to use a higher alpha value. It is important to think about the consequence of an error. A Type I error is when significance is declared when there is none, while a Type II error is when no significance is found when in fact there is one. Which of these is most important is something we need to think about. For example, if you worked in conservation of a threatened species, and you found that a particular action to enhance survival resulted in a p-value of 0.07, would you be prepared to declare that action ineffective assuming that it wasn’t prohibitively expensive? If you have committed a Type II error, and discontinue the action, it could result in extinction of the threatened species. On the other hand, if you test a pesticide, would a significant value of 0.049 be enough to decide to pursue the expensive testing required for registration? If you have committed a Type I error, the product is not likely to succeed in the market place. If the potential market is small, which tends to be the case for behavioural chemicals, it may not be feasible to use this product because of the high cost, which has nothing to do with statistical analysis, but could be the overriding concern in determining the importance of the finding.

One area where the sole use of p-values can become very problematic is for regressions. The p-value only tells us whether or not the slope of the line is significantly different from zero, and therefore it becomes really important to look at how the data are distributed. An outlier can have a huge impact, for example (see figure). As an editor I saw many questionable regressions, e.g., with single points driving much of the effect, but which in the text were described as highly significant.

Fig. 1. An example of where a single point is driving a linear regression. Take it away and there is no apparent relationship at all. Figure from http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

Finally, we need to keep in mind that a significant p-value does not indicate certainty, but probability, i.e., at p=0.05, you would expect to get the same result 19 of 20 times, but that still means that the result could be the result of chance if you only ran the experiment once. (If you run a biological experiment that yields a p-value close to 0.05 a number of times, you would soon discover that it can be difficult to get the same outcome every time). Depending on the context, that may not be all that confidence inspiring. For example, if someone told you that there was only a 5% probability that you would be get seriously sick by eating a particular mushroom, wouldn’t that make you think twice about eating it?? On the other hand many of us will gladly shell out money to buy a 6/49 ticket even though the probability of winning anything at all is very low, let alone winning the jackpot, because in the end we are buying the dream of winning, and a loss is not that taxing (unless you gamble excessively of course). I consider odds of 1:8000 in a lottery really good, which they aren’t of course, evidenced by the fact that I have never won anything of substance! So relatively speaking, 1:20 is astronomically high if you think about it!

Why am I bothering to write this as a self-confessed statistics phobe? I have mainly to emphasize that you (and by “you” I primarily mean students engaged in independent research) need to think of statistics as a valuable tool, but not as the only, or even primary tool for interpreting results. Ultimately, it is the biological information that is important.

This is a guest post by Dr. Laurel Haavik, post-doctoral researcher in the Department of Entomology at The Ohio State University.

—-

I am a post-doc. I’ve been one for nearly six years. Like many other post-docs, I have been working for over a decade towards my goal: a tenure-track position at a research-intensive academic institution. I enjoy research and teaching, and so a career including both seemed like a logical pursuit. I must be good enough to succeed in this pursuit, otherwise someone would have told me to opt for a different path by now. After all, only a small percentage of Ph.D.s actually become professors. I must be pretty close to achieving this goal, because lately I’ve had several interviews – no offers yet. By now, most of my peers have secured permanent positions, although some have gone on different paths. It must be my turn soon. I had faith in the system; confidence in myself.

Earlier this summer, I was invited to give a talk at a conference, in a session on women in science. I accepted willingly; the subject seemed challenging and relevant. As I began to prepare, I realized I knew nothing about it. So, I did what any scientist would do: I turned to the primary literature on women in science. What I found changed my whole perspective on academia, my career, and most importantly: my life.

I learned that the tenure system is outdated, and filters out many creative and talented people. It was established ca. 1940, when those entering academic careers were mostly men. Assistant professors were expected to live on campus, and work intensively, around-the-clock, on establishing themselves until achieving tenure. Sounds a lot like graduate school, or a post-doc, doesn’t it? There’s not much room in that scenario for having a life outside of this pursuit. It turns out that not much has changed about this in the intervening 70+ years. To make it worse, there are now few jobs and too many of us with graduate degrees competing to fill them. It turns out that women, more often than men, are willing to forgo their academic dreams because of this ridiculousness, in favor of something better – probably a happier life. It seems that there are two issues. One: is it even possible? Women are confronted with the complications of basic biology at the very same time as they would be embarking on a demanding academic career. Most of us are well into our thirties, near the end of our child-bearing years, by the time we’re on the job search. Two: they’re exhausted, wondering if an academic career is akin to never-ending graduate school. In the academic atmosphere, there is intense pressure to do more; for example, publish or perish, fund or famish. Talent and creativity that science badly needs is undoubtedly lost as women and men continue to opt out of this outdated system, and for very reasonable grounds.

I took a long, hard look at my career so far. I’m on my third post-doc. I’ve had two failed relationships and a third that might not make it if I have to move again. I’m not married. I don’t have children. I’m in my mid-thirties, meaning that if I want to have children, I better get situated and do it soon. Maybe academia isn’t for me after all, even though my interests, teaching and research, are so well-aligned with the academic mission. I realized that my adult life so far, 90% career and 10% life outside of work, is a direct product of what I like to call our broken academic system. We need to better understand and voice our discontent with the broken academic system, or it won’t change.

I wondered if others feel the same way. In my field, had others thought of leaving science? And if so, why? Has the disparity in numbers of women and men graduates vs. those occupying professional positions actually changed in recent decades? Most importantly, what allows people to cope with such a rigorous career? I’ve been lucky to have had some great mentors, support from my family, and support and encouragement from the scientific community in my field. Have others had the same kinds of emotional support systems?

My study pursues these questions among three related fields: Forestry, Entomology, and Forest Entomology. In all three of these fields women are not historically well-represented, but this has changed in recent years, especially in Entomology. There are still few women in Forestry. Forest Entomology is a small field with a very inter-connected community, which I hope will provide an interesting contrast to its two larger, sister fields.

Please follow the link below to participate in my study, by completing my survey.

I invite men and women at all stages in their careers, as well as those who are no longer in science, to participate. Please forward this invitation to anyone you know who is no longer in science, but completed graduate school (M.S. or Ph.D.). The results of this study will be published in the primary literature.

Please follow the link below to complete the brief, 28-question survey by September 30, 2015

https://www.surveymonkey.com/r/forestry-entomology

It may take 10-15 minutes to complete. I apologize for any cross-posting of this survey. No personal identifying information will be collected as part of the survey, and your participation will be completely anonymous. Answering questions in the survey will indicate consent. Participation is voluntary and you may withdraw at any time without penalty, and there are no incentives to participate. Participation will have no effect upon your relationship with the Entomological Society of Canada. This study has been determined Exempt from IRB review.

Please contact me if I can provide any additional information regarding the aims of or your participation in the survey (Laurel Haavik, 479-422-4997, haavik.1@osu.edu). For questions about your rights as a participant in this study or to discuss other study-related concerns or complaints with someone who is not part of the research team, you may contact Ms. Sandra Meadows in the Office of Responsible Research Practices at 1-800-678-6251 or hsconcerns@osu.edu.

Emerald Ash Borer. Credit Debbie Miller, USDA Forest Service. Bugwood.org

Emerald Ash Borer (Agrilus planipennis). Credit: Debbie Miller USDA Forest Service, Bugwood.org.

To mark the publication of the Emerald Ash Borer special issue from The Canadian Entomologist, guest editors Chris MacQuarrie and Krista Ryall from Natural Resources Canada have co-authored this blog post about the issue.

In 2002, residents of Detroit, Michigan noticed something was killing their ash trees. Ash trees in North America are susceptible to some diseases that can result in decline and mortality, so a forest disease specialist was dispatched to investigate why these trees were dying. It was soon determined that the culprit was not a disease, but an insect: a shiny, metallic-green, buprestid beetle not previously known from Michigan, or anywhere else in North America. Authorities in Michigan notified their Canadian counterparts who soon discovered numerous ash trees dying in Windsor, Ontario from damage caused by the same beetle. Eventually, with the help of a European systematist the insect was determined to be the previously described (and previously rare) Agrilus planipennis. Today, this insect is better known by its common name:  the emerald ash borer.

To commemorate the discovery of emerald ash borer in North America, we organized a symposium and workshop at the 2013 Entomological Society of Canada’s and Ontario’s Joint Meeting in Guelph, Ontario. The timing and location of this workshop seemed appropriate because 2013 marked 10 years of research on the emerald ash borer and Guelph is located only a few 100 kilometres from where emerald ash borer was first found, and is now well within the insect’s Canadian range. Our goal with this symposium was to review the state of knowledge on emerald ash borer after ten years of research, and look ahead to the questions that researchers will be asking as the infestation continues to grow and spread. We were fortunate that many of the researchers who have contributed so much of what we know about emerald ash borer were able to participate.

We were quite pleased with how well the symposium turned out. However, information presented in a symposium is ephemeral and fades away as soon as the last talk is over. To prevent this, we imposed upon our presenters to also prepare written versions of their presentations. It took some time, but now these papers are all complete, and have been put together to form a special issue of The Canadian Entomologist dedicated to the emerald ash borer.

Emerald Ash Borer

Emerald Ash Borer.  Image credit: Chris MacQuarrie

Ten years is a long time in research. We estimated that over 300 papers on emerald ash borer had been produced over that period, with more being produced every month. It is our hope that this special issue can serve as an entry point into this literature for researchers new to the field. We also hope that this issue can be valuable to more established researchers as well, to use as a resource and a touchstone in their own work. This special issue can also serve as a reminder of how much effort is required (in both research and by people) to understand a new pest. What we have learned about emerald ash borer over the past ten years (well, 13 years now) is immense. There is still much to learn though.”

The Emerald Ash Borer special issue is the free sample issue of The Canadian Entomologist for 2015.

Access the special issue for free until 1st January 2016 here.

Main image credit: Debbie Miller, USDA Forest Service, Bugwood.org

As a graduate student, publishing a paper is a big deal.  After spending countless hours doing the research, slogging through the writing process, soliciting comments from co-authors, formatting the paper to meet journal guidelines, and dealing with reviewer comments, it’s nice to finally get that acceptance letter and know that your work is getting out there.

We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. The ESC Student Affairs Committee is happy to be posting a second roundup of papers authored by Canadian graduate students. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

So, what’s hot off the press, you ask? Here’s what some entomology grad students have been up to between 31 January 2015 and 4 March 2015:

Systematics and Morphology

Piophilidae is an important family of flies to forensic entomology: their occurrence on a corpse can help determine post-mortem interval and assist legal investigations. Sabrina Rochefort (McGill University) and colleagues provide an updated key to the forensically pertinent Piophilidae in the Nearctic Region. Article link

Read more in a post on the ESC Blog

Physiology

Enrique Rodriguez (University of Ottawa) and colleagues put the membrane pacemaker hypothesis to the test for the first time in invertebrates. They found that membrane composition of flight muscle in tropical orchid bees varies with body size and flight metabolic rate. Article link

Behaviour and Ecology

How do bumblebees deal with flowers that are blowing in the wind? Hamida Mirwan (University of Guelph) and colleague found that one species of bee showed no preference between mobile and immobile flowers but motion may be a factor in terms of foraging performance. Article link

Bombus impatiens

Bombus impatiens – By [1] [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

Raphaël Royauté and colleagues found that the personality of a jumping spider was affected by sublethal insecticide exposure. Royauté wrote to us,

Jumping spiders exposed to low doses of insecticide show changes in their personalities. Insecticides alter behaviours by jamming neural transmission. Most studies on insecticide toxicity compare how behaviours differ in average between insecticide-exposed and control groups, but they don’t take into account how insecticides affect variation in behaviour (aka personality). Bronze Jumping Spiders exposed to the insecticide had lower amount of personality differences in activity and prey capture behaviours and exposed spiders were in general more “unpredictable”. These effect also varied by sex. Activity differences were more strongly affected in males while prey capture capacities were more strongly altered in females. 

These results suggest that the effects of insecticides on personality differences may manifest before any effects on the population as a whole are detected, in which case scientists may be frequently underestimating the toxicity of insecticides. Spiders play an important role in agricultural fields as they help regulate pest outbreaks. These personality alterations may affect spiders’ capacity to provide this important ecosystem service.

A more detailed explanation of this research is available here” 

Eris militaris

A female jumping spider, Eris militaris (Araneae: Salticidae). Photo by Crystal Ernst; provided by Raphaël Royauté

Matt Yunik (University of Manitoba) and colleagues discovered that unfed American dog ticks have the ability to survive an additional winter. Prior to this research, it was thought that these unfed ticks searching in spring died before the next winter. Article link

Fanny Maure (Université de Montréal) and others found and characterized a new RNA virus of Dinocampus coccinellae, a parasitoid of the ladybird beetle Coleomegilla maculata. The virus appears to be a symbiont of the parasitoid which is stored in the adult wasps’ oviducts and is transmitted by the parasitoid larva to its ladybird host. The virus then moves to the ladybird’s brain and replicates, inducing paralysis and twitching, around the same time that the parasitoid larva emerges and spins a cocoon between the legs of its host. The infected ladybird then acts as a twitchy bodyguard against predators while the parasitoid develops. Then, amazingly, when the adult parasitoid emerges from the cocoon, the viral infection in the ladybird’s brain clears and the host resumes normal behaviour! Article link

A ladybird "bodyguard" protecting its parasitoid from predators.  Photo provided by Jacques Brodeur.

A virally-manipulated ladybird “bodyguard” protecting its ‘puppet master’ from predators. Photo provided by Jacques Brodeur.

Former UdeM student Fanny Maure with her PhD work featured on the cover of National Geographic! Photo provided by Jacques Brodeur.

Former UdeM student Fanny Maure with her PhD work featured on the cover of National Geographic! Photo provided by Jacques Brodeur.

Megan McAuley (University of Guelph) and colleagues found that repeated conditioning with a floral scent is needed for long-term memory establishment in bumblebees. Article link

Murali-Mohan Ayyanath and colleagues show that sublethal doses of an insect growth regulator stimulate reproduction in the green peach aphid. Article link

Myzus persicae

Myzus persicae – By Scott Bauer [Public domain], via Wikimedia Commons

Do different pollen-packing behaviours by bees affect the functional value of pollen? PhD student Alison Parker and colleagues found that the pollen transported by non-corbiculate bees remains fully functional whereas the packing behaviour by corbiculate bee species can decrease the functionality of their pollen. This research suggests that non-corbiculate bees may be more valuable pollinators. Article link

A study by Lorraine Adderly and colleague finds that solitary bees are important for pollination in seablush plants in the Gulf Islands and on Vancouver Island. Article link 

Insect Management

Chaminda E. Amal de Silva helped provide evidence for there being high rates of blueberry spanworm parasitism in lowbush blueberry fields in eastern Canada. De Silva and colleagues suggest using augmentative or conservation biological control as a management technique against spanworm. Article link

For a forest moth, colouration is costly—especially under poor conditions (Article link). Coming soon, we will be featuring a post by Jessica Ethier (Concordia University), who took the lead on this long-term project.

The Editorial Board of The Canadian Entomologist (TCE) welcomes the comments that we receive from readers and authors.  We take these comments seriously and implement appropriate changes when possible.  We are pleased to announce three such changes that will further improve the speed, quality and flexibility of the service provided by TCE.

  • Simplified submission requirement.  Authors previously were required to submit papers with abstracts in both French and in English.  Although they can still do so, authors now need only submit an abstract in the language of the submitted paper; i.e., French or English.  This change eliminates delays associated with having abstracts translated, which will accelerate manuscript publication.
  • New open access option.  Although TCE has no page charges, there has always been a subscription fee.  As of 2014, authors now have the option of paying a one-time open access (OA) fee.  Payment of the OA fee makes articles freely available as soon as they are published online to anyone with internet access.
  • More content.  Elimination of page charges has increased submissions to the journal, with a consequence increase in the number of papers being accepted for publication.  In response, TCE is expanding its content by 10%.  This equates to an annual increase of 72 pages, or approximately 1-2 additional papers per issue.

In addition to the above changes, there are several other items that may be of interest.  ‘Instructions to Authors’ were revised in March of this year.  Revisions include instructions for the submission of ‘Supplementary Material’ and a link to third-party services that specialize in language editing.

You also may wish to read “Open access, predatory publishers, The Canadian Entomologist, and you”.  This article appears in the Bulletin of the ESC (Sept. 2013, p. 131), and examines issues that should be interest to anyone publishing in scientific journals.

In closing, we note that Dr. Chris Buddle (McGill University, Montreal, QC) will be completing his tenure as Editor-in-Chief this fall.  Dr. Kevin Floate (Agriculture and Agri-Food Canada, Lethbridge, AB) is the incoming Editor-in-Chief.

 

We thank you, the authors and readers, for making TCE an ongoing success.

Chris Buddle

Kevin Floate

B. Staffan Lindgren is a professor of entomology at the University of Northern British Columbia, and 1st Vice-President of the Entomological Society of Canada. He has been the senior supervisor of 11 M.Sc. students and one Ph.D. student, co-supervisor of two M.Sc. students, and participated on more than 20 supervisory committees.

—————-

Recently I have been approached by several students asking about how to go about applying for graduate school. Furthermore, I and a colleague are doing a brownbag lunch discussion for the local student chapter of The Wildlife Society on this topic this week, and this got me thinking about what considerations a student should have. My conclusion is that you can break down the approach into a consideration of W5 (Why, Where, Who, What, and When) to optimize the chances of being successful.

In this post I will go over my thoughts on these W’s, and relate some of my own experiences, both as student and supervisor. I have not consulted the literature, but base this on personal experience alone, so you have to bear that in mind. For the record, I have not supervised a large number of graduate students, and all but one have been at the Master’s level. On the other hand, I have only “failed” as a supervisor once, which just means that I blame myself for the student’s failure to complete. On the other hand, I have also failed as a graduate student once, so I feel I have some relevant qualifications for writing this.

Why?

This question may seem somewhat redundant, but I believe it is an important first step. It is surprising how many students go into graduate school “to get a better job”. In my opinion, that is not a good reason at all. It is very possible, or in fact likely, that you can land a better job after completing a graduate degree, but there is no guarantee for advanced degrees automatically leading to better jobs. I have two examples. One of my more successful graduate students told me long after she graduated that she went into graduate school for this very reason. Somewhere along the way, she realized that she loved research, and her passion for it grew as a result. She subsequently carried on with a PhD, and now holds a very good research position. So in her case doing a graduate degree led to exactly what she set out to do to begin with, but it wasn’t graduate school per se that lead to her success, but rather her passion for what she was doing, along with some very hard work. My second example relates to my first, and failed attempt at graduate school. I was more worried about funding than topic, and opted to do a PhD in Endocrinology. I had really enjoyed my coursework in zoophysiology, so it seemed like a logical choice at the time. I was in a good lab, had a great colleague (who is now a professor with more than 300 authored or co-authored publications). As it turned out, it was not for me, however. The reasons were many, but a lack of passion for the subject area certainly contributed (see below).

Where?

Different institutions have varying reputations, and particularly if the ultimate goal is an academic position, it may make a difference whether you hold a degree from a major research university or primarily undergraduate teaching institution. However, there may be pros and cons with joining big labs. An obvious benefit is that a large institution is likely to have lots of infrastructure and resources. On the other hand, you may end up in a lab where your supervisor plays only a limited role in your actual supervision, i.e., you may be viewed more as a small cog in a large wheel than as an important individual. To avoid this, you have to ask the next question.

Who?

The supervisor is of critical importance in my opinion. All supervisors are not made equal, and they often have their own agendas and biases! Some may expect you to work things out for yourself, while others like to treat you like an employee. Depending on your personality, you may like one or the other, or somewhere in between. Highly productive, “big name” researchers are not necessarily the best supervisors! Moderately productive scientists at small institutions may provide a much better environment, particularly for graduate students lacking prior experience, e.g., Master’s students. I went into my first two graduate degrees (including the initial failed PhD in Sweden) pretty much blind. The endocrinology attempt was uncomfortable because of an internal schism between my supervisor and the head of the department, but other than that I was fortunate to get a very approachable and helpful supervisor. My supervisor for my Master of Pest Management and PhD degrees at Simon Fraser University was as good as they come; I learned an enormous amount from him, and model my own approach to supervision on that experience.  However, he did not suit everybody. The problem is matching your own needs and preferences with a suitable supervisor. I recommend all prospective graduate students to contact both former and current students of potential supervisors and ask what it is like to be a graduate student. I even recommend students expressing interest in me as a supervisor to do the same – I think of myself as a good supervisor, but I am clearly biased, and in control of the situation, whereas a graduate student would be dependent on my actions. Raise up front issues of support (not just salary, but field assistant, transportation, accommodation in the field, expectations). Ask about how the supervisor deals with authorship – believe it or not, there are supervisors who are prone to self-promotion. A good supervisor promotes his/her students, not themselves. Once you are in a graduate position, it is much more difficult to adjust things, so do your homework up front. I also recommend students to be frank with a potential (or existing) supervisor if there are issues. If you can’t communicate with your prospective supervisor before you are his/her graduate student, it is likely that you won’t be able to later. Sometimes this is just due to personality incompatibility, but it really doesn’t matter what the reason is if you end up in a bad situation. You are never going to go into a graduate position with 100% confidence that it will be perfect, but you can optimize the chances that it will be by doing some basic research.

A successful supervisor-student relationship can turn into a lifetime relationship: Staffan Lindgren (PhD 1982), Lisa Poirier(PhD 1995) and Dezene Huber (PhD 2001), gave back to their supervisor John H. Borden by successfully nominating him for an honorary doctorate at UNBC in 2009 in recognition of his enormous impact on forest insect pest management in British Columbia. Photo by Edna Borden.

A successful supervisor-student relationship can turn into a lifetime relationship: Staffan Lindgren (PhD 1982), Lisa Poirier(PhD 1995) and Dezene Huber (PhD 2001), gave back to their supervisor John H. Borden by successfully nominating him for an honorary doctorate at UNBC in 2009 in recognition of his enormous impact on forest insect pest management in British Columbia. Photo by Edna Borden.

What?

This is perhaps the most important decision you have to make, and it is closely linked to the first W (Why?). In my experience, the most successful students are not those who come in with the highest GPA or with the most funding (although it is easier to get accepted with those qualifications as it relieves the supervisor of some obvious burdens). Rather, they are the students with a burning interest in a specific type of project, or specific organisms. A great way to find your bearings is to get involved in research as an undergraduate student. When I was a PhD student, I had three undergraduate research assistants over the years. All three went on to get a PhD, one is now a research scientist with Forestry Canada, one is a conservation biologist with a consulting company (after Environment Canada was brought to its knees by the current government), and the third is a professor at a large institution in the United States. A number of students I have hired as undergraduate summer research assistants have successfully pursued successful careers. Decisions you make as a young person can profoundly affect your future. I went to the United States as a high school exchange student – without that experience I may have lacked the confidence to come to Canada for graduate school. As an undergraduate student, I participated in annual vole surveys and spider research, which taught me something about what types of activities I enjoy. When I first wanted to pursue graduate school, I failed to use that experience. My primary interest was entomology, but funding was hard to come by, so I opted for endocrinology because that graduate position came with a stipend. This decision turned out to be a huge mistake, and after 1 ½ years I had to give up. Essentially, I selected what to do for the wrong reason. (Thanks to my brilliant graduate student colleagues, I still ended up with five publications, which probably helped me get accepted at Simon Fraser University, so it wasn’t a complete waste of time, however).  At SFU, my MPM supervisor offered me a funded project that would have been applicable to Sweden, and he gave me 8 months to think about it. I eventually made the decision to take that on, and I have never looked back. Thus, once I reset the career compass to my original goals, I ended up where I always wanted to be, which is in forest entomology!

When?

Strangely, this question relates to both “Why” and “What”, although there is considerable variation among students in terms of what is right for each individual. In my experience, however, the most successful graduate students tend to have a little bit of “real world” experience before they pursue a graduate degree. In part, this may be because they have more experience, and therefore are more confident about their abilities, and possibly more aware of their weaknesses than someone fresh out of an undergraduate degree would have. These individuals have also had time to formulate what they are really passionate about, and in my mind, passion is the most important ingredient in a successful graduate degree. Yes, you need some basic skills (communication (written and oral), quantitative skills), a modicum of intelligence, and lots of patience for endless tedium (most research is 90% tedium, 5% frustration, and 5% elation), but you don’t have to be an A+ student. As a graduate student, a passionate B student will do better than a moderately interested A+ student any day. You would be surprised how many professors and successful scientists were relatively average in high school. If the timing is wrong, you may not be happy. For example, when I first tried to pursue graduate school and ended up in the wrong program, I could have waited 2-3 years and I may have had perfect opportunities in Sweden as a huge project on insect pheromones was initiated a year after I went to Canada. I had in fact contacted several of the professors that led that project, but at the time they didn’t have the funds in place.

I mentioned at the beginning that I failed as a supervisor once. This was a combination of not matching the student with an appropriate topic, and personal incompatibility. Both resulted from inexperience, as it was one of my very first graduate students. Even supervisors learn from experience.

I hope these musings are helpful you decide to pursue a graduate degree. Good luck!

By Dr. Chris Buddle, McGill University & Editor of The Canadian Entomologist

———————-

This Issue’s Editor’s pick for The Canadian Entomologist is Staffan Lindgren and Ken Raffa’s paper, titled “Evolution of tree killing in bark beetles: trade-offs between the maddening crowds and a sticky situation”.  This is a key review paper that provides comprehensive and in-depth coverage of a critically important topic, especially for forest entomology in North America.  Bark beetles are often in the news because of the economic consequences of their population increases as we have seen in recent years. Behind this, however, are fascinating life history traits and a story about their tree killing habits. This is where the paper by Staffan and Ken comes into play. These two exceptional scientists have decades of experience on the topic of tree killing in bark beetles, and they bring this expertise forward with this paper.

I asked Staffan and Ken a few questions about their paper, and here are the responses:

Q1:  What inspired this work?

The scientific inspiration came from many years of reading about and studying these amazing insects. Over time, it became clear that “aggressiveness” is a relative term with respect to tree-killing beetles, because they generally appear to be very poor competitors. The same also seemed to be the case with tree-killing root diseases, so a pattern of trade-offs became apparent. Given the potent defensive capability of most conifers, the question naturally arose “why would a beetle risk its life attacking a live tree rather than utilizing a dead or dying tree?” It seemed that the answer had to be linked to trade-offs between the selection pressures exerted by competitors and host tree defenses. The inspiration to write these ideas up evolved through many years of developing a friendship with each other, and we tossed the idea around in a number of discussions we had. The opportunity to act came when the former editor of TCE, Robb Bennett, extended an invitation to submit an article as a CP Alexander Review.

Staffan (R) and Ken (L) (photo by C Raffa)

Staffan (R) and Ken (L) (photo by C Raffa)

Q2:  What do you hope will be the lasting impact of this paper?

The main objective was to put the idea out and to stimulate debate and perhaps generate new research ideas that will contribute to an increased understanding of bark beetle ecology and management. Whether or not we are proven right or wrong is really less important. Based on some feedback we have had already, it seems that the paper has had the desired effect in terms of stimulating thought. I also thought this was a great opportunity to work together on a project: we admire each other as scientist and are friends

Q3:  Where will your next line of research on this topic take you?  

We are working with another great friend of ours, Jean-Claude Grégoire, on two chapters in an upcoming book about bark beetles, so there may be some other ideas emerging from that collaboration.

Q4: Any amusing / interesting anecdotes about this research?

(from Staffan): From my perspective one of the most amusing things is that I can claim the unique experience of having Ken Raffa as a nurse. He is very good at that too, as it happens! The last time I visited him in Madison to work on this paper, I caught a bad cold. So we worked from home that week, with me intermittently resting and writing. It was embarrassing at the time, but now I find it rather amusing.

Cambridge University Press has made Staffan & Ken’s paper freely available worldwide until November 30 for being recognized as the Editor’s Pick. Thanks CUPress!

Citation:

Lindgren B.S. & Raffa K.F. (2013). Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): trade-offs between the maddening crowds and a sticky situation, The Canadian Entomologist, 145 (05) 471-495. DOI:

by Dezene Huber & Paul Fields
_____________________

Have you ever read a paper and, after digesting it for a bit, thought: “I wish I could play with the data”?

Perhaps you thought that another statistical test was more appropriate for the data and would provide a different interpretation than the one given by the authors. Maybe you had completed a similar experiment and you wanted to conduct a deeper comparison of the results than would be possible by simply assessing a set of bar graphs or a table of statistical values. Maybe you were working on a meta-analysis and the entire data set would have been extremely useful in your work. Perhaps you thought that you had detected a flaw in the study, and you would have liked to test the data to see if your hunch was correct.

Whatever your reason for wishing to access to the data, and this list probably just skims the surface of the sea of possibilities, you often only have one option for getting your hands on the spread sheets or other data outputs from the study – contacting the corresponding author.

Sometimes that works. Often times it does not.

  • The corresponding author may no longer be affiliated with the listed contact information. Tracking her down might not be easy, particularly if she has moved on from academic or government research.
  • The corresponding author may no longer be alive, the fate of us all.
  • You may be able to track down the author, but the data may no longer be available. Perhaps the student or postdoc that produced it is now out of contact with the principal investigator. But even if efforts have been made to retain lab notebooks and similar items, is the data easily sharable?
  • And, even if it is potentially sharable (for instance, in an Excel file), are the principal investigator’s records organized enough to find it?*
  • The author may be unwilling to share the data for one reason or another.

Molly (2011) covers many of the above points and also goes into much greater depth on the topic of open data than we are able to do here.

In many fields of study, the issues that we mention above are the rule rather than the exception. Some readers may note that a few fields have had policies to avoid issues like this for some time. For instance, genomics researchers have long used repositories such as the National Center for Biotechnology Information (NCBI) to deposit data at the time of a study being published. And taxonomists have deposited labeled voucher specimens in curated collections for longer than any of us have been alive. Even in those cases, however, there are usually data outputs from studies associated with the deposited material that never again see the light of day. So even those exceptions that prove the rule are part of the rule of a lack of access to data.

But, what if things were different? What might a coherent open data policy look like? The Amsterdam Manifesto, which is still a work in progress, may be a good start. Its points are simple, but potentially paradigm-shifting. It states that:

  1. Data should be considered citable products of research.
  2. Such data should be held in persistent public repositories.
  3. If a publication is based on data not included in the text, those data should be cited in the publication.
  4. A data citation in a publication should resemble a bibliographic citation.
  5. A data citation should include a unique persistent identifier (a DataCite DOI recommended, unless other persistent identifiers are in use within the community).
  6. The identifier should resolve to provide either direct access to the data or information on accessibility.
  7. If data citation supports versioning of the data set, it should provide a method to access all the versions.
  8. Data citation should support attribution of credit to all contributors.

This line of reasoning is no longer just left to back-of-napkin scrawls. Open access to long term, citable data is slowly becoming the norm rather than the exception. Several journals have begun require, or at least strongly suggest, deposition of all data associated with a study at the time of submission. These include PeerJ and various PLoS journals. It is more than likely that other journals will do the same, now that this ball is rolling.

The benefits of open data are numerous (Molloy, 2011). They include the fact that full disclosure of data allows for verification of your results by others. Openness also allows others to use your data in ways that you may not have anticipated. It ensures that the data reside alongside the papers that stemmed from them. It reduces the likelihood that your data may be lost due to various common circumstances. Above all it takes the most common of scientific outputs – the peer-reviewed paper – and adds lasting value for ongoing use by others. We believe that these benefits outweigh the two main costs:  the time taken to organize the data and the effort involved in posting in an online data repository.

If this interests you, and we hope that it does, the next question on your mind is probably “where can I deposit the data for my next paper?” There are a number of options available that allow citable (DOI) archiving of all sorts of data types (text, spreadsheets, photographs, videos, even that poster or presentation file from your last conference presentation). These include figshare, Dryad, various institutional repositories, and others. You can search for specific repositories at OpenDOAR using a number of criteria. When choosing a data repository, it is important that you ensure that it is backed up by a system such as CLOCKSS.

Along with the ongoing expansion of open access publishing options, open data archiving is beginning to come into its own. Perhaps you can think of novel ways to prepare and share the data from your next manuscript, talk, or poster presentation for use by a wide and diverse audience.

—–
* To illustrate this point, one of us (DH) still has access to the data for the papers that stemmed from his Ph.D. thesis research. Or at least he thinks that he does. They currently reside on the hard drive of the Bondi blue iMac that he used to write his thesis, and that is now stored in a crawlspace under the stairs at his house. Maybe it still works and maybe the data could be retrieved. But it would entail a fair bit of work to do that (not to mention trying to remember the file structure more than a decade later). And digital media have a shelf life, so data retrieval may be out of the question at this point anyhow.

By Chris Buddle, editor of The Canadian Entomologist

—————————-

The Canadian Entomologists’ latest issue is devoted to Arctic Entomology, with guest editors Derek Sikes and Toke T. Høye putting together an excellent suite of papers on this topic.  This is a very timely issue – there is an incredible amount of Arctic entomology happening around the world, and the Arctic is an area that is undergoing rapid environmental change.   It’s good that scientists are paying attention, and that entomologists are doing high quality research in the north.

Deciding on an “editor’s pick” for this issue was difficult as there were many excellent papers to choose from.  However, I ended up selecting Gergely Várkonyi and Tomas Roslin’s paper titled “Freezing cold yet diverse: dissecting a high-Arctic parasitoid community associated with Lepidoptera hosts”.   These authors, from Finland, have presented a very nice study about some food-web dynamics occurring in Zackenberg, Greenland  – a truly high Arctic field site, and one that has a remarkable history of long-term ecological monitoring.  Their work is focused on unraveling some of the amazing interactions between Lepidoptera and their parasitoids, and this paper provides a “systematic effort to characterise the high-Arctic Hymenoptera and Diptera parasitoid community associated with Lepidoptera hosts”.   This is a great paper, and hopefully continues to inspire continued efforts to study entomology at high latitudes.

Greenlandic field station

I asked the authors some questions about their work and they kindly provided in-depth answers:

Q1:  What inspired this work?

TOMAS: What got me interested in Arctic predator-prey dynamics was the work of my friend Olivier Gilg. His exploration of the predator-prey dynamics among collared lemmings and their few and selected enemies of Northeast Greenland made me realize that in a species-poor environment, the impact of individual species on each other will be oh-so-much easier to disentangle than among the zillions of interactions typical of tropical and even temperate communities. Here if anywhere you can actually work out both the structure and inner workings of full food webs – which is the very the idea that we have now realized in our study. (And well, from a less scientific point of view, after visiting Northeast Greenland I also realized that this is the most beautiful area of the globe, and that there is nowhere else that I would rather work.)

GERGELY: I have been interested in northern insects, especially hymenopteran parasitoids, since a very long time. I did my PhD in a subarctic environment in Finnish Lapland, with the main focus on host-parasitoid population dynamics between periodic moths and their enemies. I first encountered Greenlandic ichneumonids when my former teacher in ichneumonid taxonomy – and current friend – Reijo Jussila worked on the descriptions of some new species from the Scoresbysund area in Northeast Greenland. More than a decade later, Tomas asked me to identify some samples from Traill Island (NE Greenland), where he had initiated a pilot project on Lepidoptera-Hymenoptera food webs. The next step was when he invited me to join his project about to be launched at Zackenberg. The rest is history…

Q2:  What do you hope will be the lasting impact of this paper?

TOMAS: What I hope that we have achieved are three things: to expose the importance of versatile biotic interactions even in a harsh arctic environment, to reveal the massive effort needed to convincingly dissect even a simple food web, and to establish the baseline structure of a food web facing imminent climate change.

GERGELY: Could not say it any better. I can only add that I hope our thorough overview of the taxonomy and natural history of individual parasitoid species will contribute to getting a better understanding of who is who and what roles each species play in this arctic scene.

flowers in containers

Q3:  Where will your next line of research on this topic take you? 

TOMAS: While we have now figured out the structure of the Lepidoptera-parasitoid web, we should remember that this is but a small module of the overall food web of the region. Our current work aims at expanding/zooming out from this core web towards the full food web of the region, which should actually be more realistically doable here than anywhere else on the globe (see above). In this work, we try to make maximal use of modern molecular tools, offering new resolution to documenting trophic interactions.

GERGELY: Apart from the community ecology goals of this project, we will further continue to update what is known about the parasitic wasp fauna of Greenland. I am focusing on the Ichneumonidae, the single most species-rich family of Hymenoptera in both Greenland and the entire World. By combining morphology and molecular methods, I attempt to clarify species boundaries and detect potential cryptic species. The ultimate goal of this research is to compile a modern taxonomic overview of the Ichneumonidae of Greenland.

Q4: Any amusing anecdotes about this research?

TOMAS: Gergely used to wear a handy hiking suit of light coloration. One day he was almost shot as a polar bear after sneaking up on an unsuspecting colleague in the field.

GERGELY: Well, first of all I was not sneaking, just looking for adult wasps in a safe distance from this colleague of ours. She thought my net was a giant paw of a polar bear (!) and she was really scared for a short moment. But she was definitely not about to shoot me!

Mountain