Posts

(version française)

As part of a continuing series of Canadian Entomology Research Roundups, here’s what some Canadian entomology grad students have been up to lately:

From the authors:

Finn Hamilton (University of Victoria)

It is now well known that the majority of insects host symbiotic bacteria that have profound consequences for host biology. In some cases, these symbioses can protect hosts against virulent parasites and pathogens, although in most cases it remains unclear how symbionts achieve this defense. In this paper, we show that a strain of the bacterium Spiroplasma that protects its Drosophila host against a virulent nematode parasite encodes a protein toxin. This toxin appears to attack the nematode host during Spiroplasma-mediated defense, representing one of the clearest demonstrations to date of mechanisms underpinning insect defensive symbiosis. Article link

Drosophila

This is a Drosophila falleni fly infected by the nematode, Howardula aoronymphium, which Spiroplasma protects against. Photo credit: Finn Hamilton.

Lucas Roscoe (University of Toronto)

The Emerald Ash Borer (Agrilus planipennis Fairmaire, EAB) is a buprestid pest of ash trees in North America. As part of the development of long-term management plans for EAB, several projects detailing the biology and ecology of poorly-known, yet indigenous parasitoids associated with EAB were initiated. One project concerned the mating sequences of the chalcidid parasitoid, Phasgonophora sulcata Westwood. Many insects undertake repeatable actions prior to mating. These are commonly mediated by pheromones. The results of this research were the description of the mating sequence of P. sulcata, and evidence of female-produced pheromones that initiate these actions. Article link

sulcata

Phasgonophora sulcata, an important parasitoid of the emerald ash borer. Photo credit: Lucas Roscoe.

Marla Schwarzfeld (University of Alberta)

The parasitic wasp genus Ophion (Hymenoptera: Ichneumonidae) is almost entirely unknown in the Nearctic region, with the vast majority of species undescribed. In this study, we published the first molecular phylogeny of the genus, based on COI, ITS2, and 28S gene regions. While focusing on Nearctic specimens, we also included representatives of most known species from the western Palearctic region and several sequences from other geographical regions. We delimited 13 species groups, most recognized for the first time in this study. This phylogeny will provide an essential framework that will hopefully inspire taxonomists to divide and conquer (and describe!) new species in this morphologically challenging genus. Article link

Ophion

A parasitoid wasp in the genus Ophion. Photo credit: Andrea Jackson

Seung-Il Lee (University of Alberta)

Seung-Il Lee and his colleagues (University of Alberta) found that large retention patches (> 3.33 ha) minimize negative edge effects on saproxylic beetle assemblages in boreal white spruce stands. Article link    Blog post

beetle

A saproxylic beetle, Peltis fraterna. Photo credit: Seung-Il Lee.

Paul Abram (Université de Montréal)

The relationship between insect body size and life history traits (e.g. longevity, fecundity) has been extensively studied, but the additional effect of body size on behavioural traits is less well known. Using the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and three of its stink bug host species as a model system, we showed that body size differences were associated with a change in a suite of not only life history parameters (longevity, egg load, egg size), but also several behavioural traits (walking speed, oviposition rate, host marking speed). Our results highlight how the entire phenotype (behaviour and life history) has to be considered when assessing associations between body size and fitness. Article link

Telenomus

The parasitoid Telenomus podisi parasitizing eggs of the stink bug Podisus maculiventris. Photo credit: Leslie Abram.

Delyle Polet (University of Alberta)

Insect wings often have directional roughness elements- like hairs and scales- that shed water droplets along the grain, but why are these elements not always pointing in the same direction? We proposed that three strategies are at play. Droplets should be (1) shed away from the body, (2) shed as quickly as possible and (3) forced out of “valleys” formed between wing veins. A mathematical model combining these three strategies fits the orientation of hairs on a March fly wing (Penthetria heteroptera) quite well, and could readily be applied to other species or bioinspired materials. Article link

Winghairs

Hairs on a March fly (Penthetria heteroptera) wing. Photo credit: Delyle Polet.

In-brief research summaries

Taxonomy, Systematics, and Morphology

Thomas Onuferko from the Packer Lab at York University and colleagues carried out an extensive survey of bee species in Niagara Region, Ontario. Onuferko et al. collected over 50 000 bees and discovered 30 species previously not recorded in the area. Article link

Christine Barrie and colleague report the Chloropidae flies associated with common reed (Phragmites) in Canada. Article link

 Behaviour and Ecology 

Blake Anderson (McMaster University) and colleagues investigates the decoupling hypothesis of social behaviour and activity in larval and adult fruit flies. Article link

Susan Anthony from the Sinclair Lab at Western University, along with Chris Buddle (McGill University), determined the Beringian pseudoscorpion can tolerate of both cold temperatures and immersion. Article link

A study by Fanny Maure (Université de Montréal) shows that the nutritional status of a host, the spotted lady beetle (Coleomegilla maculata), influences host fate and parasitoid fitness. Article link

Is connectivity the key? From the Buddle and Bennett Labs at McGill University and the James Lab at (Université de Montréal), Dorothy Maguire (McGill University) and colleagues use landscape connectivity and insect herbivory to propose a framework that examines that tradeoffs associated with ecosystem services. Article link

 Alvaro Fuentealba (Université Laval) and colleague discovered that different host tree species show varying natural resistance to spruce budworm. Article link

Insect and Pest Management

Rachel Rix (Dalhousie University) et al. observed that mild insecticide stress can increase reproduction and help aphids better cope with subsequent stress. Article link

Lindsey Goudis (University of Guelph) and others found that the best way to control western bean cutworm is to apply lambda-cyhalothrin and chlorantraniliprole 4 to 18 day after 50 % egg hatch. Article link

Matthew Nunn (Acadia University) and colleague document the diversity and densities of important pest species of wild blueberries in Nova Scotia. Article link

Physiology and Genetics

Does heterozygosity improve symmetry in the Chilean bee, Xeromelissa rozeni? Margarita Miklasevskaja (York University) and colleague tested this hypothesis in their recent paper. Article link

Xeromelissa

A Chilean male Xeromelissa rozeni. Photo credit: Margarita Miklasevskaja.

Recent University of Alberta graduate Jasmine Janes and others explored the mating systems and fine-scale spatial genetic structure for effective management of mountain pine beetle. Article link

Also from the Sperling Lab at the University of Alberta, Julian Dupuis and Felix Sperling examined the complex interaction of hybridization and speciation. They characterized potential hybridization in a species group of swallowtail butterflies. Article link

Marina Defferrari (University of Toronto) and colleagues identified new insulin-like peptides in Rhodnius prolixus and that these peptides are involved in the metabolic homeostasis of lipids and carbohydrates. Article link

Techniques

Crystal Ernst (McGill University) and colleague sampled beetles and spiders in different northern habitats. They found that the diversity of beetles and spiders are affected by habitat and trap type. Article link

 


We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com. You can also send us photos and short descriptions of your research, to appear in a later edition of the research roundup.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

As part of a continuing series of Canadian Entomology Research Roundups, here’s what some Canadian entomology grad students have been up to lately:

Ecology and Evolution

Rasoul Bahreini (University of Manitoba) found that honeybee breeding can improve tolerance to Varroa mites which can help minimize colony losses in the winter and improve overwintering performance (Article link). Rasoul also found that reducing ventilation may be an effective way to manage Varroa mite infestation in overwintering honeybee colonies (Article link), and that Nosema infection restrained Varroa removal success in bees (Article link).

A setup to study the effects of Nosema on Varroa mite removal in honeybees (Photo: Rasoul Bahreini)

A setup to study the effects of Nosema on Varroa mite removal in honeybees (Photo: Rasoul Bahreini)

A novel method based on agar-polydimethylsiloxane devices to quantitatively investigate oviposition behaviour in Drosophila melanogaster was described by Jacob Leung and colleagues (York University) (Article link).

Paul Abram (Université de Montréal) and his colleagues found that a predatory stink bug has control of egg colouration, depending on whether it is laying on the top or underside of leaves.  The pigment protects developing embryos against UV radiation (Article link). See also a related post on the ESC blog, an article in the New York Times, and a dispatch article in Current Biology.

A spined soldier bug female, with the range of egg colours she is capable of laying (Photo: Leslie Abram/Paul Abram/Eric Guerra)

A spined soldier bug (Podisus maculiventris) female, with the range of egg colours she is capable of laying (Photo: Leslie Abram/Paul Abram/Eric Guerra)

Philippe Boucher and colleagues (Université du Québec à Rimouski/Chicoutimi) found that ant colonization of dead wood plays a role in nitrogen and carbon dynamics after forest fires (Article link).

Did you know that ground squirrels have lice – and males have more than females? Neither did we, but Matt Yunick and colleagues (University of Manitoba) recently published an article in The Canadian Entomologist describing their findings (Article link).

Boyd Mori and Dana Sjostrom (University of Alberta) were part of a group of researchers that found that pheromone traps are less effective at high densities of forest tent caterpillars because of competition for pheromone plumes (Article link).

Parasitoid memory dynamics are affected by realistic temperature stress. As part of a collaboration with the University of Palermo (Italy), Paul Abram (Université de Montréal) and colleagues discovered that both hot and cool temperature cycles prevent wasps (Trissolcus basalis) from forgetting. (Article link).

Trissolcus basalis (Hymenoptera: Platygastridae) parasitizing the eggs of its host Nezara Viridula (Hemiptera: Pentatomidae). These parasitoids can detect their host's

Trissolcus basalis (Hymenoptera: Platygastridae) wasps (left panel) parasitizing the eggs of their host stink bug Nezara viridula (Hemiptera: Pentatomidae; mating couple shown in right panel). These parasitoids can detect their host’s “chemical footprints”, and even commit them to memory! (Photos: Antonino Cusumano)

Crisia Tabacaru and Sarah McPike (University of Alberta) studied Dendroctonus ponderosae and other bark and ambrosia beetles and found that competition between the beetles may limit post-fire colonization of burned forest stands (Article link).

Marla Schwarzfeld (University of Alberta) found that tree-based (GMYC and PTP) species delimitation models were less reliable in delimiting test species, and the Nearctic Ophion (Hymenoptera: Ichneumonidae) fauna is much larger than previously thought (Article link).

Where have all the mosquitoes gone? Emily Acheson and colleagues (University of Ottawa) found spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats (Article link).

Tyler Wist and colleagues (University of Alberta) found that a native braconid parasitoid (Apanteles polychrosidis) uses host location cues induced by feeding damage on black ash but not on green ash (Article link). Also check out the author’s recent post on the ESC Blog!

Fig. 2 Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae)

Fig. 2 Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) (Photo: Tyler Wist).

Agriculture

Sharavari Kulkarni and colleagues (University of Alberta) discovered that reducing tillage could increase the amount of weed seeds consumed by carabid beetles (Article link).

Physiology and Genetics

Sebastien Boutin and colleagues (Université Laval) are beginning to decode the genetic basis of honeybee hygenic behaviour (Article link).

Investigating the cold tolerance of different Sierra leaf beetle life stages, Evelyn Boychuk and colleagues (University of Western Ontario) found that adults are freeze tolerant, the eggs and pupae are freeze-avoidant, and the larvae are chill susceptible (Article link).

From the Authors:

Shaun Turney, Elyssa Cameron, and Chris Cloutier had this to say about their new article published in PeerJ:

Our supervisor, Prof. Chris Buddle, has always emphasized the importance of voucher specimens for our entomology research. He explained that voucher specimens make our work replicable and verifiable. We wondered how widespread the practice of making voucher specimens among those practicing arthropod-based research. We investigated the frequency of voucher deposition in 281 papers, and the factors which correlated to this frequency. Surprisingly, vouchers were deposited less than 25% of the time! Our paper highlights the need for a greater culture of voucher deposition and we suggest ways in which this culture can be cultivated by researchers, editors, and funding bodies.

Voucher specimens: an important component of arthropod-based research (Photo provided by Shaun Turney, Elyssa Cameron, and Chris Cloutier)

Voucher specimens: an important component of arthropod-based research (Photo provided by Shaun Turney, Elyssa Cameron, and Chris Cloutier)

From Ikkei Shikano, on two of his recently published articles:

Parents that experience a stressful environment can equip their offspring to fare better in a similar environment. Since this can be energetically expensive for the parent, we asked if parents are exposed to two stressors (nutritional stress and a pathogen), would they equip the offspring for both stressors or would they select one over the other? Cabbage looper moths exposed to a pathogen and poor food quality produced offspring that were highly resistant to that same pathogen. Parents that were given poor food produced offspring that developed faster on poor food. When the parents experienced both stressors, they produced offspring that were resistant to multiple pathogens but did not grow faster on a poor diet (Article link).

Herbivorous insects unavoidably eat large and diverse communities of non-entomopathogenic microbes, which live on the surface of their host plants. Previous studies suggest that consuming non-entomopathogenic bacteria may induce a costly immune response that might decrease the risk of infection by pathogens. But isn’t it wasteful for an insect upregulate a costly immune response to non-pathogens that it ingests with every meal? Within an appropriate ecological context, we show that cabbage looper, Trichoplusia ni, larvae do not induce a costly immune response, indicating that they are adapted to consuming non-pathogenic bacteria that are commonly found on the surface of their host plants (Article link).

From Kate Pare, on an article published by a group of undergraduates taking the Arctic Ecology field course at the University of Guelph:

Our study focused on changes in ant diversity in the area surrounding Churchill, Manitoba between the historic collections made by Robert E. Gregg in 1969 and collections made by students and instructors of the Arctic ecology field course in 2012. Seven ant species were collected in 2012 compared to the five species recorded from 1969. This increase in species richness in the 2012 collection is more likely a result of cryptic molecular diversity that was overlooked in the collection made in 1969 (Article Link, post on the ESC blog).

Members of the Arctic Ecology Field course 2015 (Photo: Eric Scott)

Members of the Arctic Ecology Field course 2015 (Photo: Eric Scott).


The ESC Student Affairs Committee will be continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

By Tyler Wist  

The ash leaf cone roller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) (Fig. 1) started to get noticed in the cities of the Western Canadian prairies in 1998, well, in Saskatoon, SK at least. I know this because that summer the green ash, Fraxinus pennsylvanica (Oleaceae), in my front yard was covered in cone rolled leaflets and had not been prior to that year. I had just started working for the City of Saskatoon’s Pest Management Program that year and one of our mandates was urban forest insects…not that there was any budget to control them, but it piqued my interest in urban forest entomology.

Fig. 1 The ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) adult, pupal exuvium and cocoon.

Fig. 1 – The ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) adult, pupal exuvium and cocoon.

The following year, Chris Saunders with the City of Edmonton’s Pest Management Program, contacted us in Pest Management and asked if we had seen this cone roller on our ash trees because they had just noticed it on the ash trees in Edmonton. Greg Pohl had identified this leaf miner/leaf roller that year on all species of horticultural Fraxinus in Edmonton and published the identification and some life history of the moth in a 2004 paper (Pohl et al. 2004) along with a brief identification of several parasitoids that were reared from larvae and pupae. The lone braconid, identified to the genus Apanteles and found to be all one species by Darryl Williams of the Canadian Forest Service in Edmonton seemed to be the dominant parasitoid in this complex, but without a species designation not much else about the wasp could be gleaned from the literature.

Chris Saunders suggested that I study the ash leaf cone roller as a master’s project but I digressed from urban forest entomology for a few years into pollination of a nutraceutical/agricultural crop. By this time, the ash leaf cone roller had spread to every ash tree in both cities and often rolled 100% of the leaflets on a single tree. I finally followed Chris’ advice and started a PhD project in Maya Evenden’s lab at the University of Alberta, which was the only lab in Canada that was working on the ash leaf cone roller problem (Evenden 2009). The Apanteles sp. was still the dominant parasitoid and so, along with studies on the chemical ecology of the moth (Wist et al. 2014), I also studied the third trophic level in this system (Wist and Evenden 2013). Of course, I couldn’t go through my studies without knowing what the species designation was for the dominant parasitoid wasp. Fortunately, Jose Fernandez-Triana had just begun his study of the genus Apanteles at the CNC in Ottawa and once Henri Goulet passed along the Apanteles specimens that I had sent for identification he quickly determined that this parasitoid was Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) (Fig. 2).

Fig. 2 Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae)

Fig. 2  – Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae)

Apanteles polychrosidis kills the ash leaf cone roller larvae before they can chew their emergence “window” that they use to escape the cone rolled leaflet as adults. This behaviour gives a fairly reliable visual cue that a cone rolled leaflet without a “window” has been parasitized by A. polychrosidis because the other parasitoids in the complex emerge after the cone roller has pupated and created its escape route “window”. Unrolling the leaflet confirms the presence of A. polychrosidis if its telltale “hammock-like” cocoon is present (Fig. 3). This type of cocoon is thought to be a defense against hyper-parasitism but as we found (Wist and Evenden 2013) it doesn’t always work out for A. polychrosidis!

Fig. 3 Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) adult above its cocoon and beside the leaflet cone rolled by Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae). Note the emergence hole in the side of the leaflet that the wasp chewed to escape.

Fig. 3 – Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) adult above its cocoon and beside the leaflet cone rolled by Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae). Note the emergence hole in the side of the leaflet that the wasp chewed to escape.

To assess the percentage of parasitism by this dominant parasitoid I adapted a method that Chris Saunders and I had discussed years earlier for assessing the parasitism of Apanteles sp. on individual trees. For the initial experiment in our paper (Wist et al. 2015) I sampled leaflets to estimate the density of cone rollers on the tree and estimated the percentage of parasitism by A. polychrosidis on two of the common urban species of ash in Edmonton. Apanteles polychrosidis parasitism was higher on black ash, F. nigra, at all sites than it was on green ash, F. pennsylvanica, which can be called differential parasitism and it seems to be common when host larvae develop on two or more host plants, but had not been well studied on trees. When host density and parasitism were graphed, the relationship of parasitism to host density could be visualized by the slope of the regression line, and on black ash, parasitism was independent of host density on black ash, but was negatively density dependent on green ash. In other words, on black ash parasitism is always high but on green ash, parasitism declines as the density of C. fraxinella increases. I ran the same experiment on green and black ash trees in Saskatoon with the same results but we chose to leave them out of the final version of the manuscript.

I was already studying the chemical ecology of C. fraxinella so this was where we looked for an answer to the differential parasitism in the field. I ran a y-tube olfactometer experiment with black and green ash plant material as the attractive source of volatile organic chemicals (VOCs) and this turned out to be rather tricky. I had three treatments that I wanted to test; undamaged leaflets, leaflets damaged by C. fraxinella and leaflets that were mechanically damaged.

First, I tried to bag small seedlings as the source of the plant smell but I couldn’t seal the system well enough to get reliable airflow through the y tube chamber. I had to switch to using leaflets alone which raises the issue of the smell of the leaflets changing once they have been removed from the tree which could be a problem especially in the “undamaged” treatment. I also needed enough female A. polychrosidis hunting for hosts to give me a decent sample size so I had to collect and emerge as many “un-windowed” cone-rolled leaflets as I could in the summer, and hope that they would actually mate and want to oviposit into host larvae at this point in their lives. Another issue was that I couldn’t coax my summer emerged C. fraxinella to lay eggs on ash seedlings to create leaf-mined treatments. Fortunately, a subset of the local population of C. fraxinella had developed a second generation on the new ash leaves that a dying ash tree puts out in July in an effort to save itself. These leaflets became my leaf-mined treatment. Over two seasons with a lot of juggling and timing of three species I was able to gather enough experimental data with the olfactometer to discover that female A. polychrosidis were differentially attracted to the volatile odour cues from each ash species. In green ash tests, they were attracted to the smell of green ash alone but in black ash tests, they were not attracted unless the leaflets were attacked by its host. The “icing on the manuscript cake” was the GC-EAD results by co-authour Regine Gries that showed that 13 compounds in the volatile profile of ash could be sensed by the antennae of A. polychrosidis, and some of them are known to increase in response to herbivore damage.

I’d say that this manuscript is a starting point for further studies on this interesting parasitism system and could accommodate projects from chemical ecology and landscape ecology perspectives at the very least. In fact, Danielle Hoefele and Sarah McPike have already begun projects in Maya’s lab on the FraxinusCaloptilia-Apanteles system. In case you’d like to know more, here is the link to our manuscript published in Arthropod-Plant Interactions.

—- By Gwylim S. Blackburn & Wayne P. Maddison—-

Animals reveal a lot about their lives simply by the way that they behave. When observed in the wild, they also offer insights to the function of behaviours in a natural context. Capturing these insights just requires a little patience, and attention to the right details.

In a recent study printed in the journal Behaviour, we set out to document Habronattus americanus jumping spider behaviors that would shed light on their ‘mating strategies’—the tactics used by females and males to acquire mates. Specifically, we wanted to know if males show off their flashy displays only to females or also compete directly with each other, if they invest heavily in mate search, and if females are choosy when deciding who to mate with.

HamericanusMaleFront_Blackburn&Maddison

An adult male Habronattus americanus jumping spider travels through beach habitat in British Columbia, Canada. The bright coloration on his face and legs is presented to females during elaborate courtship dances. Photo credit: Sean McCann.

To pursue these issues, we followed 41 adults for up to 30 minutes each, and we also staged interactions between an additional 36 male-female pairs, in natural habitat.

Typical Habronattus americanus habitat is fairly flat, well-drained, and sparsely covered with plants, sticks, or pebbles. Photo credit: Maxence Salomon

Typical Habronattus americanus habitat is fairly flat, well-drained, and sparsely covered with plants, sticks, or pebbles. Photo credit: Maxence Salomon

The behaviours of both sexes pointed quite strongly to indirect male competition for choosy females. Males did not display to (or fight with) each other. Instead, they travelled far and wide, eating nothing but displaying to every female they met. Females, on the other hand, focused on hunting rather than travel, and they almost never permitted copulation despite the vigorous courtship efforts of males.

Collectively, these behaviours supply deeper lessons than their individual functions; they also indicate how natural selection might shape several of the traits involved. In particular, our findings suggest that female mate choice may be the key source of selection favouring the evolution of male display traits.

An adult female Habronattus americanus jumping spider in natural beach habitat. Females are avid hunters. Photo credit: Sean McCann

An adult female Habronattus americanus jumping spider in natural beach habitat. Females are avid hunters. Photo credit: Sean McCann

The apparently high investment by males in mate search also represents a potential factor shaping female mate preferences. In a variety of other species, mate search costs have been shown to provide a way for females to judge the quality of prospective mates. This is because males who are able to pay those costs while still producing an impressive display can make better fathers (e.g., by providing better parental care, or by passing along advantageous genes to their offspring). To determine if this is the case in H. americanus, further research will be needed to see how male condition is linked to the quality of their displays and the success of their offspring.

The Habronattus jumping spiders are famous for their stunning array of male displays. It would be fascinating to know how mating strategies, and the natural surroundings in which they unfold, have influenced this diversity. Behavioural observations of different species in the wild will be essential for getting at this question.

By Chris Buddle, Editor of the Canadian Entomologist

———————–

I am pleased to present the “Editor’s Pick” manuscript for the current issue of The Canadian Entomologist. This pick was a paper by Bob Lamb, Patricia MacKay and Andrei Alyokhin, titled “Seasonal dynamics of three coexisting aphid species: implications for estimating population variability

I had always admired the ongoing work on aphids, spearheaded by Bob and Pat. Their work is always relevant, meticulous, framed in an important and broader ecological context, and they have a ‘model system’ to work with. This is the kind of researcher many more junior entomologists look up to.  The current paper is no exception. In this work, Bob and Pat joined up with Andrei Alyokhin and present a careful study of population variability and effectively use this metric to better understand population dynamics over time.  For me, I see much value in this approach, and can see how this kind of work could effectively be used in teaching students about how to best describe, understand, and quantify population dynamics.  I’m also inspired to see long-term data with arthropods. These kinds of data are so useful, but relatively rare. It’s great to see Bob, Pat and Andrei publish thoughtful and important work using such data.  I may also look around some old filing cabinets at my University…

Bob was kind enough to answer a few questions about this work, with input from his co-authors.

What inspired this work?

When Pat MacKay and I were anticipating eventual retirement from paying jobs as entomologists, we decided to begin a study of an aphid population that could be pursued as long as we could walk trails and count aphids. Our goal was to figure out why aphid populations seem to be so unstable. Eventually we wrote up our findings on the stability of one native species over the first 10 years of a study we hope will go on for at least another 10 years. A few years ago we realized we needed comparative data, but were too old to start on a 20-year study of another aphid species. The solution was to write to colleagues who also had long-term data sets, to see if they were interested in looking at their data from this perspective. So far the colleagues we have contacted have been enthusiastic collaborators. The first was Andrei Alyokhin our coauthor on the current paper. He gave us access to 60 years of data on three aphid species. The first paper on the stability of these aphids was published in the Canadian Entomologist two years ago. The current paper extends that earlier work, looking now at how aphid seasonal biology affects our estimates of stability.

Bob Lamb, sporting "aphid hunting gear"

Bob Lamb, sporting “aphid hunting gear”

What do you hope will be the lasting impact of this paper?

We hope that this paper will help convince other researchers that Joel Heath’s metric, PV, which we use to quantify population variability, is a robust way to quantify one aspect of the stability of populations. If more researchers adopt this metric, ecologists will have a much greater opportunity to apply a comparative approach and identify factors that contribute to stability or instability of populations.

Where will your next line of research on this topic take you?

Pat MacKay and I continue to extend our time series on the abundance of a native aphid, and are now focusing more on the ecological processes that cause our five populations to rise and fall. We also hope to expand our studies of stability to still more aphid species, but also species with very different life histories. At the moment I am working with a colleague, Terry Galloway, University of Manitoba, on several time-series of ectoparasite abundance on birds.

Do you have any interesting anecdotes about this research?

One of the most interesting aspects of the work on aphids from potatoes is the source of the data – 60 years or more of weekly aphid counts. The data for the early years were discovered by Andrei Alyokhin in an abandoned filing cabinet stored in a barn at the University of Maine. Andrei was a new faculty member at the time exploring his research facilities. His predecessors had maintained meticulous records of aphid densities in potato plots since soon after World War II. Andrei was quick to recognize the value of this data, and more importantly recognized the need to go on collecting the data in the same way. The result is an amazing data set, one of the longest continuous records at one location of the dynamics of multi-voltine species.

Lesson 1: newly-hired entomologists should begin their careers by searching old filing cabinets.

Lesson 2: meticulous long-term records can be invaluable, sometime in ways that you might not anticipate.

Andrei discovering data in old filing cabinets

Andrei discovering data in old filing cabinets

Lamb R.J., MacKay P.A. & Alyokhin A. (2013). Seasonal dynamics of three coexisting aphid species: implications for estimating population variability, The Canadian Entomologist, 145 (03) 283-291. DOI:

By Chris Buddle
__________________________________

Authorship on written work should never be taken lightly.  Authorship implies ownership and responsibility for the ideas and content portrayed as the written word.  In science, our currency is the written word, in the form of peer-reviewed articles submitted and published in scientific journals, and multi-authored works are the norm (sometimes to ridiculous degrees!).   Being an author on a paper is critically important for success in academia: the number of publications on your CV can get you job interviews, scholarships, and often leads to increased research funding.  Scientists are often judged by publication metrics, and although we may not like this system, it remains prevalent.  With this context I pose the following question: What is the process by which an individual is granted the privilege of being an author on a peer-reviewed journal article?  This blog post will provide an objective method to determine authorship for a publication, and by sharing it, I hope it helps bring some clarity to the issue.

(Note: as a biologist, I am drawing from my experiences publishing in the fields of ecology and entomology, and in my role as the Editor-in-Chief for a scientific journal, The Canadian Entomologist – the ideas presented below may not be transferable to other fields of study).

A paper that resulted from a graduate class; should all these individuals be authors on this paper? (yes, of course!)

The method outlined below starts by thinking about five main stages in the publication process, and there are individuals associated with each stage:

1. Research concept, framework, and question:  The research process leading to a publication has a conceptual backbone – it is the overarching research framework.  The background ideas and concepts that initiate the research that leads to a publication come from somewhere (…and someone).  Although the end product of research may be the publication, a good research question is at the start, and drives the entire process.  Without a solid framework for research, and a clear question, the research will simply never be in a form suitable for publication.   The person (or people) who developed the big-picture ideas, research framework, and research question are to be considered as authors on the final publication.  In the University framework, this is often an academic who has developed a laboratory and research program around a thematic area of study.

2.  Funding.  Someone has to pay for research – whether it be a large, collaborative research grant that supports many graduate students, or whether it be a small grant from a local conservation agency.  An individual scientist applied for money, and was able to support the research that leads to the publication.  These monies could directly support the research (e.g., provide travel funds, purchase of equipment), the individual doing the research (e.g., pays the graduate student stipend, or technician), or the monies could offset the costs associated with the publication process itself (e.g., many journals charge authors to submit their work, also known as page charges).    The individual(s) who pay for the research need to be considered as authors on the final publication resulting from the research.  More often than not, this individual is the main “supervisor” of a research laboratory, but could also be important collaborators on grant applications, often from other Universities or Institutions.

3. Research design and data collection:  Once the overall research question is in place, and funding secured, the actual research must be designed and executed.  These are placed together under one heading because it is difficult to separate the two, nor should they be separated.  You cannot design a project without attention to how data are collected, nor can you collect data without a clear design.  In a typical University environment, Master’s and PhD students are intimately associated with this part of the research equation, and spend a very significant portion of their time in design and data collection mode.  Without a doubt, the individual(s) who “design and do” the research must be considered as authors.

4.  Data analyses, and manuscript preparation:  The next step in the process is taking the data, crunching the numbers, preparing figures and tables, and writing a first draft of the manuscript.  This is a very important step in the process, as this is the stage where the research gets transformed into a cohesive form.  In a typical University laboratory, this is often done by Master’s students, PhD students, or post-docs, and the product of this stage is often (part of) a graduate student’s thesis.   However, it is also quite likely that a research associate, technician, or Honour’s student be involved at this stage, or that this stage is done by multiple individuals.  For example, data management and analyses may be done by a research technician whereas the head researcher does the bulk of the synthetic writing.  Regardless, one or many individuals may be involved in this stage of the publication process, and all of these people must be considered as authors on the final product.

5. Editing, manuscript submission, and the post-submission process: The aforementioned stage is certainly not the final stage.  A great deal of time and effort goes into the editing process, and quite often the editing and re-writing of manuscripts is done by different individuals than those who wrote the first draft.  Important collaborators and colleagues may be asked to read and edit the first draft and/or other students within a laboratory may work to fine-tune a manuscript.  Most likely, the supervisor of a graduate students invests a lot of time and energy at this stage, and works to get the manuscript in a form that is ready to be submitted to a scientific journal.   The submission process itself can also be difficult and daunting – papers must be formatted to fit the style requirements for specific journals, and the on-line submission process can take a long time.  After the manuscript has been submitted and reviewed by peers, it will most likely return to authors with requests for revisions.  These revisions can be lengthy, difficult, and require significant input (perhaps from many individuals).   For all these reasons, this fifth stage of the publication process cannot be undervalued, and the individual(s) associated with editing, submitting and dealing with revisions must be considered as authors.

Those five categories help define the main stages that lead to a scientific publication, and there are individuals associated with each stage.  Here’s the formula to consider adopting when considering which individuals should be authors on the final product:  if an individual contributed significantly to three or more of the above stages, they should be an author on the final paper.  Here’s an example: in a ‘typical’ research laboratory, the supervisor likely has a big-picture research question that s/he is working on (Stage 1) and has secured funding to complete that project (Stage 2).  A Master’s student, working with this supervisor, will work on the design and collect the data (Stage 3), and as they prepare their thesis, will do the bulk of the data analysis and write the first draft of the paper (Stage 4).  In most cases, the editing and manuscript submission process is shared by the supervisor and the student, and both individuals are likely involved with the revisions of the manuscript after it has been peer-reviewed (Stage 5).  In this case, both individuals clearly contributed to at least three of five categories, and the paper should be authored by both individuals.

A classic example of a paper with a graduate student and supervisor as co-authors.

What about the research assistant that helped collect data? – since they only contributed to Stage 3, they are not considered as an author.  The same is true of a collaborator at a different University who may have helped secure the funding (Stage 2), but did not help with the process in any other way – they do not qualify as authors on this work.   It is quite possible that a post-doc in a laboratory contributes to multiple stages, even on a single Master’s project. For example, the post-doc may have helped secure the funding, assisted significantly with data analysis, and helped to edit the final paper – this entitles them to authorship.

This entire method may be considered too rigid, and cannot really be implemented given the complexities of the research process, and given personalities and politics associated with the research process. Furthermore, many researchers may include their friends on publications, in hopes that the favour will be returned so both individuals increase their publication numbers.    I do not think this is ethical, and overall, if an individual did not contribute to the research process in a significant way, they should not be authors.  The method outlined above provides one way to help determine how this ‘significant way’ can be determined objectively.  The process is certainly not without fault, nor will it work in all circumstances, but perhaps it will help to define roles and help to consider seriously who should be considered as authors on papers.

I can also admit that I have not always contributed to “3 of 5 stages” on all the paper for which I am an author, so you can call me a hypocrite.  That’s OK, (I’ve been called worse), and I reiterate that the process outlined above is context-dependent, and simply provides a framework, or guide, for thinking about this important issue in science.

I am certainly not alone in this discussion, nor with this concept – Paul Friedman wrote about this (in A New Standard for Authorship) and the method in analogous to the one outlined above (although with more categories).  Some journals also specify their expectations for authorship.  As an example, in its instructions to authors, PNAS states that ‘Authorship should be limited to those who have contributed substantially to the work’, and request that contributions be spelled out clearly.  This is a good idea, and forces people to think about the issue.

I’ll finish with two more important points:  First, determining authorship, and thinking about authorship, must be a transparent and clear process.  Graduate students must not be surprised when their supervisor states that some other researcher will be an author on their work – this should have been clear from the start.  A discussion about authorship must occur early in the research process.  Full stop.

Second, another key question is the order of authors.  For example, when is the student’s name first on a publication, and the supervisor second?  What’s the convention for your field of study? Who should be second author when there are four or five co-authors?  This is a complicated question and, you guessed it, one that will be addressed in a future blog post!

Please share your thoughts… how does your laboratory deal with the question of authorship on scientific papers?

Chris Buddle, Editor-in-Chief, The Canadian Entomologist

______________________________________

These days, scientific societies are struggling to maintain membership.  This is, in part, because the value of membership is not always apparent.  The Entomological Society of Canada has recognized this issue for years, but I believe we are starting to enter a new, exciting era for ESC members.   This will be especially apparent at the upcoming ESC Joint Annual Meeting (November 3-7,  2012) when the society will host its first hands-on “workshop”; this workshop is free for members of the society.  Let me repeat:  FREE for ESC members!  That is value for your membership.

There is, however, a catch:  you must register for this workshop in advance! 

Here are the details:

Workshop: “Perspectives on the Publication Process”

On Sunday November 4 from 9-12am, immediately before the start of 2012 Joint Annual Meeting in Edmonton, the Entomological Societies of Canada and Alberta are jointly hosting a workshop on the publication process at the JAM venue.  This goal of this workshop, focusing on Entomology in Canada, is to provide practical information and demystify the publication process from writing to reviewing to editing to publishing. This workshop is intended for anyone with an interest in the publication process, irrespective of career stage, experience, or age.

The workshop will start with four short and informative presentations

  1. Introduction, Chris Buddle, Department of Natural Resource Sciences, McGill University & Editor-in-Chief, The Canadian Entomologist
  2. An Editor’s perspective on process and issues in publication, Mark Goettel, Editor-in-Chief,  Biocontrol Science and Technology
  3. Some basic rules for writing a manuscript, Jeremy McNeil, Department of Biology, University of Western Ontario
  4. A publisher’s perspective on current challenges and opportunities in scientific publishing, Jonathan Speilburg, Cambridge University Press

This will be followed by moderated break-out sessions on five topics (selected based on feedback from ESC members).  These sessions are meant to be informal and interactive.   Attendees will be able to attend two breakout sessions.

  • The Peer Review Process
  • Picking the Right Journal
  • Ethics, Authorship and Data
  • How to Review a Scientific Manuscript
  • Current Challenges in Scientific Publishing

The workshop will finish with take-home messages from each of the break-out sessions and with a panel discussion with the featured speakers.

Attendees MUST sign up for the workshop by ticking the correct box on the form when pre-registering for JAM

This is a first come, first serve event with limited space and it is filling up fast.  So if you want to attend, register soon! Registration will include a food break, and is free to ESC and ESAB members; $50 for non-members (to be paid at the workshop).

If you have any questions, you can contact members of the workshop organizing committee:

Chris Buddle (chris.buddle@mcgill.ca)

Kenna MacKenzie (Kenna.MacKenzie@agr.gc.ca)

Rosemarie De Clerck-Floate (Rosemarie.DeClerck-Floate@agr.gc.ca)