News

By Christopher Cloutier, Naturalist, Morgan Arboretum
___________________________________

The Morgan Arboretum of McGill University, with its 245 ha of forest and interspersed field habitats, is home to nearly 50 species of butterflies. Over the past two years I have tried to document all species occurring within the Arboretum and made note of the date of their earliest appearance. Many of the butterflies observed are the “expected” species, such as the Question Mark, White Admiral and the Monarch.

Others, though, were much more exciting finds: the Banded and Acadian Hairstreaks, the Baltimore Checkerspot and the Silver Spotted Skipper to name a few. Of all the highlight species found over the past two years, one that truly stands out is the Hackberry Emperor (Asterocampa celtis).

Hackberry Emperor looking down from a high perch. Credit: Christopher Cloutier

Like many other butterfly species, the Emperor is specific to one type of host plant for its larvae. You guessed it: the Hackberry Tree (Celtis occidentalis). Although the Arboretum lies within the native range for this tree, it is one that is rarely encountered. It is found naturally on the outskirts of the property and nowhere near the main walking trails; that is, until about 10 years ago when the Arboretum planted several trees near the parking lots along the main road. The trees today are no taller than 4m but are growing rapidly. This represents nearly the entire habitat in which the Emperors were discovered back in 2010, and this is the tale of their unusual discovery.

Unlike most of the species which I have documented over the years, this one came as a report from a concerned visitor to the Arboretum. I remember this case vividly as it was quite unique. A visitor to the Arboretum came by the gatehouse to mention that they were seeing a large butterfly up close. In fact, the butterfly was landing on them with regularity every time they passed by a certain location. This was something I had to see for myself. Not knowing what to expect I followed the man to where he encountered this critter and sure enough we were standing right next to the Hackberry plantation. Within less than a minute a butterfly alighted on my shoulder, a species I had never encountered before. I quickly collected it with my aerial net and brought it back to my office for a closer look.

It didn’t take long to discover that this beautiful butterfly was indeed the Hackberry Emperor. After doing a little bit of research, I realized that this was not the first time that this species had been encountered at the Arboretum, but it was the first time in nearly half a decade. I decided to have a little photo shoot with the insect just to get some record shots. I then gave it a sip of grape juice and brought it back to where I first captured it.

Hackberry Emperor refueling after a photo shoot. Credit: Christopher Cloutier

I decided to have a closer look at the Hackberry trees scattered about on the grassy lawn. There were only five trees, not more than twice my height, and I quickly noticed why the butterflies were here. They were breeding. After searching the gall-riddled leaves of the Hackberries, I discovered several clusters of eggs as well as some recently hatched first instar larvae. Again, upon my arrival several adults were patrolling the area trying to frighten me away, or maybe trying to get a closer look at who I was. It didn’t seem to matter what colour clothing I was wearing, they just seemed interested in large silhouettes near their nursery.

Eggs and freshly hatched larvae of the Hackberry Emperor. Credit: Christopher Cloutier

Since this first discovery I have encountered Hackberry Emperors every summer since. They are typically active in mid-June and their activity time extends into July and August. Their dependence on a single tree species makes this butterfly quite interesting. Had we chosen to plant a different species of tree as a windbreak for the parking area, we may not have ever encountered this butterfly again. It seems now that we have made an ideal artificial breeding habitat for this beautiful insect, and hopefully they choose to use it year after year, that is, as long as they abide by our strict “no harassing other visitors” policy.

My name is Chris Buddle – I’m an Associate Professor at McGill University, in Quebec, Canada, and the Editor-in-Chief for The Canadian Entomologist. I have worked at McGill University, in the Department of Natural Resource Sciences, for about 10 years. As a Professor, my work involves all three aspects of academia – teaching, research, and service.

For teaching, I instruct undergraduate courses in our “Environmental Biology” program – this involves teaching courses in both my own area of expertise (entomology) as well as in more general areas (e.g., ecology).

My research program is quite varied; although originally hired as a “Forest Insect Ecologist” my research expertise is broader than that, and I currently oversee graduate students working on insect pest management, the ecology of herbivorous insects in forest canopies, and the biodiversity of Arctic arthropods. The latter initiative is part of a larger-scale project titled the Northern Biodiversity Program.

For “service” I devote a lot of time and energy into my position as the Editor-in-Chief for the Entomological Society of Canada’s flagship journal The Canadian Entomologist (TCE) – a journal that joined a publishing partnership with Cambridge University Press in January of this year.

TCE is an excellent scientific journal, and I am honoured to be associated with it. Its excellence is in part because of TCE’s long history as an internationally renowned entomology journal – it has been published continuously since 1868. TCE is a journal with particularly high editorial and technical standards. We pride ourselves on serving authors well, and on producing a product that has been carefully edited, and that is technically clean. TCE is one of the relatively rare entomology journals that publishes on all facets of the discipline, including taxonomy and systematics, biodiversity and evolution, insect pest management, behaviour and ecology, and more.

We are, therefore, an entomology journal for all entomologists – anyone interested in arthropods can generally find an article of relevance within its pages. I’m also excited about TCE’s new partnership with Cambridge. This publishing house has an equally impressive history, and an equally high standard of publication quality. With this partnership, authors no longer pay page charges for TCE, and receive a complementary PDF of their articles.

As Editor-in-Chief, I have an opportunity to help guide the journal into the future. My editorial objectives include a balance of doing what we have done well in the past (i.e., high quality standards), but also seeking some new opportunities. For example we are initiating a plan to produce a topical “special issue” of TCE every year, for the first issue of each volume. For Volume 145 (the year 2013), we will be devoting an entire issue to the topic of “Perspectives on Arctic Arthropods“. This is an extremely important area of study given the current global concerns about changing climates, especially since some of the effects will be most acute in polar regions. The call for papers for this special issue went out at the end of January, and authors have until 15 June 2012 to submit their manuscripts.

Another objective I have is to continually improve our service to authors. Our move to an on-line manuscript submission system is helping this tremendously and I am continuing to work with my editorial team to tweak the system for the benefit of our authors. I am also interested in bringing entomology, and TCE, to a broader audience. Entomology is a vast and wonderful discipline, but the pages of entomology journals often target a specialized audience. I think a lot of what we publish in the journal is of broad interest, and for that reason, I tweet for the Entomological Society of Canada’s twitter account (follow us: @CanEntomologist). This is an effective way to use social media to highlight articles we publish, activities of the Entomological Society of Canada, and other interesting entomology events and stories. We also have plans to work with our society to develop a blog devoted to entomology in Canada, and TCE will be featured prominently on this blog.

I would like to conclude with a few words of advice for up-and-coming entomologists looking to publish their work. The publication ‘game’ can be a complex one, and it is a changing landscape that can be difficult to navigate. In addition to thinking about the traditional metrics when considering different journals, I do recommend that all potential authors look carefully at the “aims and scope” section for potential venues for publication – it is important that your work will be a good fit with the journal. It’s also easy to be swayed by numerous journals that are sprouting up and seem to be offering everything for nothing. Some journals may seem attractive at first glance, but be aware that quality of service, and the quality of the editorial process, may be less than what could be offered by journals backed by a publisher with strong credentials. More ‘traditional’ journals often have an incredible amount of behind-the-scenes support, and this matters. I will also stress that all authors must strive for a clean, concise, and well-written manuscript. I cannot state strongly enough that careful writing and proofreading is of paramount importance.

In sum, it’s truly a delight to be associated with The Canadian Entomologist and its publication partner, Cambridge University Press. The future is bright for the journal, and I am exciting to work hard to increase the profile and readership of TCE, all the while maintaining its history of excellence. I have assembled a strong editorial team of 20 subject editors, and have additional support from my Editorial Assistant, Dr. Andrew Smith. We are all here to help you publish your best entomological research, and get it into the hands of an international audience.

Read the first issue of the year for free here

___________________________________________________________

This article was originally published at http://blog.journals.cambridge.org/ and can be found at: http://blog.journals.cambridge.org/2012/04/meet-the-editor-in-chief-of-the-canadian-entomologist/

“Dear Buggy” is an advice column featured in the ESC Bulletin, written by Dr. Chris MacQuarrie.  “Buggy” will also be offering his great tips, tricks and hints every other month here at the ESC blog. In the meantime, enjoy this teaser from the June 2012 edition of the Bulletin!

_____________________________

Dear Buggy,

I’ve got too many things on the go and I can’t seem to keep on track. My field season starts next week, but I haven’t even started planning for it yet. I’ve missed two due dates in the last month, plus I think I may have stood up my boyfriend last night. I would call him to apologize, but I forgot to pay my phone bill last month and they cut me off. Help me! How do I manage my time?

Signed,

‘Short on Time in Terrace’

Thanks for the ‘timely’ question. Hopefully you will have managed to contact your boyfriend before this is published! Teaching yourself how to manage your time is an important skill to develop while you’re young. Speaking from experience, I can assure you that things only get worse as you progress through your career. Your time is precious.

Our tasks, and the time it takes to do them, can be organized on different temporal scales. Since entomologists are already pretty good at thinking about the world at different scales, it should be a logical step for you to think about your time in this way. For example, you have to finish your thesis in the next 5 years; you have to prepare and pass your qualification exams next year, your field season starts in a month, your project proposal is due next week, you are teaching tomorrow, and you have a dental appointment in an hour. Obviously, how you manage these different commitments varies depending on their immediacy. To be efficient, you must manage your time over all temporal scales. That way, things won’t sneak up on you.

Click here to read the rest of this great column in the Bulletin!

_______________________________

Chris MacQuarrie is a research scientist with the Canadian Forest Service in Sault Ste. Marie where he studies the management of native and invasive insects. Currently, he’s beginning to realize that all time management tactics go out the window when you have a toddler in the house. “Dear Buggy” is always looking for suggestions or guest contributors. Have an idea or a question? Send it to: cjkmacquarrie@gmail.com or post it in the Facebook student group.

Dr. Rebecca Hallett of the School of Environmental Sciences, University of Guelph is looking for a graduate student and a post-doctoral research assistant to join her research group.

Swede Midge

This work is licensed under a Creative Commons Attribution 3.0 License – CC-BY. Image by Susan Ellis, USDA APHIS PPQ, Bugwood.org

Insect‐Plant Interactions & Pest Management –  Graduate Student Position Available
Project summary:
I am currently seeking a motivated graduate student (Ph.D. or M.Sc.) to investigate host plant interactions between the invasive crucifer pest, the swede midge (Contarinia nasturtii (Diptera: Cecidomyiidae)) and spring canola. The graduate student will investigate the relationships between timing and intensity of swede midge populations, canola phenology, damage severity and yield impacts. This project is part of a larger program to develop an integrated pest management program for swede midge in spring canola, including insecticide efficacy, optimal insecticide timing with respect to canola phenology, and the development of comprehensive pest management recommendations for swede midge in canola.

Start date and stipend:
Anticipated start date of September 2012 (preferred) or January 2013. Funding is guaranteed for 3 years at the Ph.D level and 2 years at the M.Sc. level.

Deadline for Application: June 15, 2012

For application procedures and required qualifications, please see full advertisement here.

Entomology & Chemical Ecology – Post-Doctoral Research Associate Position Available

Spotted Wing Drosophila

This work is licensed under a Creative Commons Attribution 3.0 License- CC-BY. Image by Hannah Burrack, North Carolina State University, Bugwood.org

Research Project:
We are currently seeking a motivated Post-Doctoral Research Associate to investigate the chemical ecology of Spotted Wing Drosophila (Drosophila suzukii (Diptera: Drosophilidae)), an invasive pest of soft-skinned fruit. The post-doc will develop semiochemical-based pest management methods for D. suzukii that can be used in both conventional and organic production systems. The post-doc will help design and execute lab and fieldwork, analyze data, and write up publications in collaboration with the PI and other members of the research team. The post-doc will also have opportunities to supervise undergraduate project students and to interact with collaborators at Vineland Research Innovation Centre, Agriculture & Agri-Food Canada and OMAFRA. This project is part of a larger program on the biology and management of D. suzukii in Ontario.

Timeframe:
Anticipated start date of 1 August 2012. Two year position, with possibility of extension.

Deadline for Application: June 10, 2012

For full application procedures and required qualifications, please see full advertisement here.

———————————————–

ESC Blog will not forward applications or handle inquiries regarding advertised positions; please follow instructions and use contact information provided in advertisement.

If you have an entomological job or student opportunity available, let us know and we’ll be happy to spread the word!

By Michel Cusson, ESC President
______________________________

For my first blog post, you’d probably expect me to talk about some hot issue pertaining to the ESC. However, I chose otherwise (at least this time) and I’ll save Society-related topics for my “Up Front” column, which you can read in the online version of the Bulletin. Instead, I’d like to introduce you to what I consider the coolest product of insect evolution: the use of symbiotic viruses by parasitic wasps to manipulate the physiology of their caterpillar hosts.

Aleiodes indiscretus wasp parasitizing a gypsy moth caterpillar. Photo by Scott Bauer.

In an unusual twist of evolutionary history, some ichneumonid and braconid parasitoids have “captured” a conventional virus and “domesticated” it so that it can be used to their own advantage in the course of parasitism. The viruses in question, known as polydnaviruses (from poly-DNA-virus, but typically pronounced “polyd-na-virus”), replicate in wasp ovaries where they accumulate in the fluid bathing the eggs, before being injected into the caterpillar during parasitization (egg laying). While the carrier wasp is completely asymptomatic, the infected caterpillar displays AIDS-like symptoms, whereby its ability to mount an immune response against the wasp egg or larva is depressed by the virus. In addition, the virus will often block host metamorphosis, particularly when parasitization takes place late in caterpillar development; this will allow the wasp larva to complete its own development before the host undergoes the traumatic events associated with the larva-to-adult transformation.

But what makes these viruses pathogenic in the caterpillar while being apparently harmless in the wasp, and how could such unusual creatures have evolved? To begin understanding the answers to these questions one first needs to know that polydnavirus genomes are permanently integrated into the chromosomal DNA of the carrier wasps. This means that all individuals within a species known to carry one of these viruses contain the viral DNA within their own genome. Production of the viral particles, however, is confined to females and occurs only in ovaries. There, copies of the integrated form of the viral genome are synthesized and packaged into a proteinacious coat known as the “capsid”. These viral particles are released into the lumen of the oviduct, where they accumulate until injection into the caterpillar host.

What’s going on “behind the scenes”. Image by Michel Cusson and Marlene Laforge.

Once injected, the virus gains access to various host tissues where some of its genes are expressed, leading to the synthesis of viral proteins that do the dirty work, i.e., depress the host immune response and perturb host development. Few, if any, of these virulence genes are expressed in the wasp, which probably explains why the wasp is asymptomatic. While the virus does not replicate in the caterpillar, it is the expression of viral genes that makes it possible for the wasp egg and larva to survive within the host. And successful development of the immature wasp is what ensures transmission of the integrated form of the virus to the next wasp generation.

Whether polydnaviruses are “real” viruses has been a matter of debate for many years. For example, some have argued that, although they look like viruses, they are nothing more than a smart device that the wasps have evolved to transfer host-regulating factors to caterpillars during oviposition. However, it is becoming increasingly clear that polydnaviruses arose from ‘conventional’ viruses.

Recently, a group from France has shown that the proteins that make up the coat of braconid polydnavirus particles are highly similar to those of ‘nudiviruses’1, a group of conventional insect viruses that are capable of integrating their genomes into those of their hosts. So, it appears that the genome of a nudivirus became permanently integrated into the chromosomal DNA of an ancestral braconid, some 100 MYA. Since then, evolution has led to the replacement of the original nudiviral virulence genes by other genes that are usefull to the wasp during parasitism. The wasps may therefore be viewed as having ‘domesticated’ the nudivirus, turning it into a mutualistic virus – a phenomenon fairly unique in the world of viruses. Cool stuff, isn’t it?

____________________________
This post was chosen as an Editor's Selection for ResearchBlogging.org1Bezier, A., Annaheim, M., Herbiniere, J., Wetterwald, C., Gyapay, G., Bernard-Samain, S., Wincker, P., Roditi, I., Heller, M., Belghazi, M. & (2009). Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus, Science, 323 (5916) 930. DOI: 10.1126/science.1166788

CONTACT THE SOCIETY

Association Coordinator: info@esc-sec.ca

ESC President: ESCPresident@esc-sec.ca

Follow The Society on Twitter

This post is also available in: Français