De : La Société Canadienne de Phytopathologie et Agriculture et Agroalimentaire Canada

À : Tous les chercheurs en lutte antiparasitaire au Canada

 OBJET : RAPPORT DE RECHERCHES SUR LA LUTTE DIRIGÉE 2021 – Maladies et insectes – DEMANDE DE RAPPORTS

DIRECTIVES À L’INTENTION DES AUTEURS ET DES RÉVISEURS DE SECTIONS POUR LA PUBLICATION DE RÉSULTATS POUR LA SAISON 2021  


Un des objectifs du Rapport de recherches sur la lutte dirigée (RRLD) est de faciliter l’échange de renseignements sur la lutte antiparasitaire intégrée entre les personnes impliquées dans la recherche et les services-conseils de lutte antiparasitaire intégrée des insectes et maladies d’importance pour l’industrie agroalimentaire canadienne. À cette fin, le RRLD est publié annuellement sous forme d’une compilation de rapports de recherche effectuée par le personnel des gouvernements fédéraux et provinciaux, des universités, de l’industrie et des services-conseils. Ces rapports contribuent au développement de recommandations pour la gestion de programme de lutte antiparasitaire à travers le Canada. Ils traitent de tous les aspects de la lutte antiparasitaire, incluant les réponses des cultivars et des modes de gestion et ils sont disponibles afin d’appuyer les demandes d’homologation de produits antiparasitaires.

Afin d’augmenter la valeur de ce rapport, nous demandons à toute personne ayant conduit des études impliquant la lutte antiparasitaire dans le secteur agricole en 2021 de nous faire part de leurs résultats selon le format décrit dans le guide ci attaché (également disponible en anglais). Quoique des renseignements suffisants doivent être fournis afin de permettre aux lecteurs de comprendre clairement de quelle façon le travail a été fait, le dispositif expérimental ainsi que le raisonnement appuyant l’interprétation des résultats devraient être présentés brièvement. UNE ou DEUX pages devraient suffire afin de couvrir tous les détails pertinents d’une manière précise et informative. Les rapports peuvent être soumis en français ou en anglais. Les auteurs doivent s’assurer d’avoir obtenu la permission des titulaires d’homologation avant de soumettre des données au sujet de leurs produits pour une publication disponible au public.

Puisque La revue canadienne des insectes nuisibles aux cultures n’est plus publiée, le RRLD inclut maintenant la section Enquêtes phytosanitaires et infestations – insectes et acariens, afin de combler le manque de renseignements découlant de l’arrêt de cette publication annuelle. Les résultats des enquêtes phytosanitaires au champ afin de déterminer la présence, l’abondance et la distribution d’espèces nouvelles ou déjà établies peuvent être publiés dans cette section selon le même format que les autres rapports dans le RRLD. Ces rapports devraient inclure la superficie de la culture infectée en hectares ainsi que le lieu, les actions ou produits de répression utilisés afin de minimiser les dommages à la culture, la détermination des pertes de récolte si possible et les résultats suite aux actions de répression.

Les instructions complètes de rédaction et de soumission sont ici.

Les éditions 1995-2020 du RRLD sont disponibles pour consultation et téléchargement à http://phytopath.ca/publication/pmrr/.

By Nicole McKenzie, PMRA

Growing up is a continuous lesson in assessing risks.

In my case, those risks included going for a double salchow with the risk of taking a bad fall, pushing my limits on my bike with the risk of an accident around every corner, or choosing an insect-filled educational path that was once considered risky for girls and women.

But with these risks come opportunities, and learning which risks are worth taking, and which are best avoided, is a critical lesson we all learn through experience and opportunity. Luckily for me, I survived the risks I took, and the lessons they taught me prepared me for a job that I love.

For the last decade, I have been an Evaluation Officer with the Pest Management Regulatory Agency (PMRA), the pesticide-regulating wing of Health Canada.

In an effort to join the #scicomm science communication revolution, I want to do a better job of explaining what I do.

No, I don’t pop a wheelie on ice while wrangling bees in a forest, but I do work that is almost as interesting.  I said *almost*.

What DO you do, then?

I deal with pollinators of the insect kind.  I look at how pesticides affect bees that collect and move pollen from male and female flower parts. This process is called pollination and it helps to produce fruit like apples. Pollinators are vital to not only Canada, but to the entire world’s food supply. I assess pollinator pesticide risk, which means I analyze research from some Entomology Society of Canada members as well as the greater pollinator community. With a team of scientists, I dissect the data from research studies and organize it around a risk assessment framework. The framework holds up the data so the team can see ALL of the highs and lows of the risk.  

From here we can step back and take in the whole risk picture gallery.

From the picture emerges a Pollinator Risk Management Plan that can be put in place to help safeguard our bees and food.

The Bikes and the Bees

Every day, we take what are deemed acceptable risks like driving a car at high speeds, and we try to prevent unacceptable risks like contracting measles that could affect our families and ourselves.

Deciding which risk is worth taking can be overwhelming. My risk assessing jam is The Risk Song by Risk Bites. It both winds my gears and chills me out.

Our method to assess risk is a lot like grinding through bike gears from smallest to largest. A better way of explaining this is by writing about going for a bike ride. But not just any bike ride, a big one like a Century Bike Race where you ride 100 km in one day, something I hope to accomplish this summer.

A Century Bike Race is risky, but like anything, it can be assessed and a plan developed to manage the risk.

To assess the risk, I first completed 3 tests as I trained on my bike. Like steps, each test relied on the one before to gather information on the risks.

The stepped tests (or tiers as we call them in the risk assessment world) start very basic and move toward a more realistic set-up closer to mimicking the actual bike race. At each step, if an effect was seen (or a risk identified) another test was completed.

Effect information:

Tier 1: Basic bike riding skills

  • TEST: Emergency stop or trying-to-stop-quickly-from-a-fast-speed.
  • EFFECT = Falling over. This might be the fastest (unintentional) way to end my race.

Tier 2: Group riding skills

  • TEST: Riding with the flow in a group of cyclists with bikes in front, behind and on both sides.
  • EFFECT = I wobble side to side as I ride.  No one wants to ride beside that.

Tier 3: Bike racing skills

  • TEST: Entering some shorter bike races.
  • EFFECT = I have never done a bike race before. *NOTE: I have competed in short distance triathlons, but ask any roadie about how these don’t count*. Bike racing seems a little like running with bulls, except with extra metal, spokes and wheel parts. Ouch.

Exposure Information:

It’s not enough to list effects seen from my bike race “tests”; I need to know about the race. I need to know details about what I could be exposed to during the race. This could include the road conditions, the type of race, the timing of the race and so much more.

Risk Assessment = Effects + Exposure

Using a framework, I compared the effects seen in the 3 tiered tests to what I expect to be exposed to during my bike race, and came up with this Risk Management Plan:

 

TEST TYPE RACE EXPOSURE INFORMATION RISK IDENTIFIED MANAGEMENT STEPS
Tier 1

Basic bike riding skills

  • The race is mainly on paved roads
  • There is a hill at 87 km
  • There is a gravel road at 88 km, at the bottom of the hill
  • Race is in the summer
  • I want to finish well
Falling off bike
  • REDUCE THE RISK
    • Wear a helmet
    • Carry a bike repair kit
    • Carry water and food
    • Carry emergency contact information
    • Practice emergency stopping
Tier 2

Group riding skills

Wobbling as I ride
  • REDUCE THE RISK
    • Practice riding in a straight line
    • Practice riding in a group
Tier 3

Bike racing skills

I have never done a bike race before
  • REDUCE THE RISK
    • Practice climbing hills
    • Practice biking on gravel
  • MINIMIZE EXPOSURE
    • Enter smaller bike races before the big one
    • Wear weather appropriate clothing and sunscreen

If my bike analogy is still lost on you, connect with me on Twitter and I’ll try comparing it to landing a double axel instead. In the meantime, here’s a handy interactive infographic to explain the risk assessment process using caffeine as an example.  

The Bees and the Bikes

Assessing pesticide risk to pollinators is similar to assessing bike race risk. There are of course different pollinator tests for each of the 3 tiers and different exposure details needed for plants and pesticides but the process is the same. Each tier gets more specific and more realistic to what and how a pollinator could react when encountering a pesticide in the environment. Here is how a general pollinator risk assessment works starting with the tiered tests:

Effect information examples:

Tier 1: Individual bee effects

  • TESTS:
    • Observe individual bees after they are fed pesticides mixed with sugar
    • Observe individual bees after a pesticide drop is placed on their back

Tier 2: Semi-field effects

  • TESTS:
    • Observe bee colonies that are placed under tents with pesticide treated plants
    • Observe bee colonies that are fed pesticides mixed with sugar and/or pollen

Tier 3: Full-field effects

  • TEST: Observe bee colonies that are placed in fields of pesticide treated plants

Exposure information examples:

    • The type of pesticide and how it works
    • The plants that are to be treated with the pesticide
    • The timing of the pesticide applications and when the plants bloom
    • If pollinators are found on or attracted to the treated plants
    • The amount of pesticide found in the plant parts that pollinators may feed on or touch

Risk Assessment = Effects + Exposure

Just like with my bike race we use a framework to compare the effects with the exposure information but there is more to consider that can complicate the process.  

We also strive to understand the natural history of pollinators and the way crops are grown and harvested in Canada.   This crucial information is then overlaid on the exposure information and the effects seen. This melding together of ALL the collected information results in, you guessed it, a Pollinator Risk Management Plan.

Example of Pollinator Pesticide Risk Management Plan Steps

Some management steps that crop up in plans I’ve helped put together include:

  • Not allowing pesticides to be applied to any plant while it flowers
  • Reducing the amount of pesticide applied to a level below where the risk lies
  • Changing the timing of a pesticide application from before to after flowering
  • Eliminating the use or method of a pesticide application

Risky Buzz-i-ness keeps me busy

Working with pollinators has taught me that nothing is as straightforward as it seems. The science changes all the time, as do the risks as we learn more about bees, their behaviour, and how plants are grown in Canada.

There is one thing I do rely on, and that is how pollinator work is NEVER boring.

If you want more information about the pollinator risk assessment process… or to give me bike race tips here’s some links:

Me at the University of Guelph Elora Research Station.

by Elisabeth Hodgdon, Ph.D. Candidate, University of Vermont

“It’s a story of unrequited love,” says Dr. Yolanda Chen, my Ph.D. advisor, describing our research on pheromone mating disruption. Mating disruption, a pest management strategy that involves inundating a field with synthetic sex pheromone, prevents male insects from finding their mates because they can’t cue in on individual female pheromone plumes. As a result, the males become confused and die without mating. During my time as a Ph.D. student, I’ve spent a lot of time in Vermont and Ontario becoming intimately familiar with the sex lives of swede midge, a serious invasive pest of cruciferous crops.

Swede midge (Contarinia nasturtii, Diptera: Cecidomyiidae) first arrived in North America in the 1990s in Ontario. Vegetable growers started noticing that their broccoli, cauliflower, and cabbage plants were deformed and didn’t produce heads, and that their kale leaves were twisted and scarred. On canola farms, yields decreased because of distorted plant growth. The culprit, identified by Dr. Rebecca Hallett and her research group from the University of Guelph, was a tiny fly called swede midge. The midge, only about 2 mm long as an adult, is seemingly invisible to farmers because it is so small. Within a few years, the midge had made its way from Ontario to Québec and other provinces, and into New York and Vermont.

Female swede midge on cauliflower.

At the University of Vermont, we are the only research lab in the US working on this pest, which is currently causing up to 100% yield loss of organic broccoli and kale in our state. Naturally, it made sense for Dr. Chen to reach out to Dr. Hallett in Guelph for collaboration to investigate management options for this pest. Together, they wrote a grant funded by the USDA to conduct pheromone mating disruption research on swede midge that would take place in both Vermont and in Guelph.

This where I enter into the story. I jumped at the opportunity to join Dr. Chen’s lab, not just because I’m interested in insect pest management, but also because of my continuing love affair with Canada. I grew up in Vermont, a small state that borders Québec and has had lots of influence from our northerly neighbors: a history of French-Canadian immigrants, widespread availability of decent quality poutine, and signage in our largest city en français, among other things. I grew up learning French and visiting nearby Montréal and later went on to study agriculture at McGill University’s Macdonald Campus. I was thrilled at the opportunity to spend more time in Canada during my Ph.D. program.

Me and University of Guelph entomology graduate students at the ESC meeting in Winnipeg last fall: Charles-Étienne Ferland, Jenny Liu, me, Sarah Dolson & Matt Muzzatti (left to right). Photo credit: Matt Muzzatti.

I have gotten to know the English-speaking provinces better through my graduate work as a visiting Ph.D. student in Dr. Hallett’s lab in Guelph. Although many Canadians, especially those from nearby Toronto, describe Guelph as being a “small farm town,” it felt like a real city, especially coming from Vermont. I fell in love with Guelph — the year-round farmers market, old stone buildings, beautiful gardens, and emphasis on local food. The large sprawling farms just outside the city were the perfect places for me to do my research on swede midge pheromone mating disruption, which required lots of space between plots and treatments. Back in Vermont, where the farmland is wedged in small valleys between mountain ranges, we just don’t have the scale of crop production that there is in Ontario.

Josée Boisclair, me, Yolanda Chen, and Thomas Heer (left to right) at IRDA this summer getting ready to transplant broccoli for mating disruption research.

Working with Dr. Hallett opened up many doors and expanded my network in Canada. Last year, my advisor and I started a collaboration with the Institut de recherche et de développement en agroenvironnement (IRDA) in St-Bruno-de-Montarville, Québec. Earlier this winter, I practiced my French and mustered up the nerve to give two extension presentations on my swede midge work to francophone farmers in Québec. I was surprised at the number of people who came up to me after my talk, appreciative that I was making an effort to communicate with them in French rather than English. They were genuinely interested in working together with my research group across the border to help strengthen our research efforts to manage swede midge.

In all the time I’ve spent in Canada (which at this point can be measured in years), I can’t think of a time when I’ve felt unwelcome. On the contrary, I am impressed with how open most Canadians are to foreigners. I hope that we can continue to work together, despite language barriers, differing political systems, and other potential challenges, to gain traction in our efforts to find solutions for swede midge and other shared invasive species in the future.