, , , ,

Joint Annual Meeting ESC-ESM 2017 – Winnipeg, MB

Yes, the International Congress of Entomology, which included the 2016 Entomological Society of Canada meeting contained within it, has just drawn to a close, but it’s never too early to start planning and preparing for the next ESC Annual Meeting!

So, in 2017, please accept the invitation of the Entomological Society of Manitoba to join entomologists from across the country in Winnipeg October 22-25 to share their, and your, entomological research and curiosity!

Official 2017 ESC-ESM Joint Annual Meeting Website

screen-shot-2016-10-03-at-10-35-21-pm screen-shot-2016-10-03-at-10-35-35-pm

, , ,

BugsR4Girls – Applied entomology with a twist

By B. Staffan Lindgren (@bslindgren)

I have always thought of myself as extremely fortunate and blessed to have made a career in entomology. The main reason is that 99.9% of all entomologists I have met and come to know over the years have been extremely nice people. Like most entomologists, I was interested in animals (which in my case included insects and spiders) at a young age. Many of my friends probably considered me a bit odd, but that’s as far as it went as far as I recall. Unfortunately, that is not always the case as this story reveals.

The other day I (along with a large number of people on Twitter) got to witness this kindness in action in a way that warms my heart. Nicole Spencer, a concerned mother, sent a request to the Entomological Society of Canada (ESC) regarding her young daughter, Sophia, who happens to love insects and wants to become an entomologist when she grows up. Sophia’s interest has somehow led to teasing and outright bullying in school, however. Fortunately Sophia’s mom understands the importance of nurturing her daughter’s interest, as did my mother even though I kept spiders in jars in my bedroom. Nicole’s and Sophia’s heartfelt letter was passed on to Morgan Jackson (@BioInFocus), who promptly posted a tweet on behalf of the ESC (@CanEntomologist) asking entomologists to help out. This tweet, which displayed the letter, included the hashtag #BugsR4Girls, and it quickly went viral.

facebook-shareWithin a very short period, Morgan had amassed a list of 100+ people willing to assist, along with a number of additional offers from non-entomologists. An offer even came from celebrity Dominic Monaghan, British actor and host of the television program Wild Things with Dominic Monaghan. You can get the gist of it all from the Storify that Morgan put together. The huge response led to interest from media, and Sophia and her mom were featured on Buzzfeed Canada, where the whole story is revealed. It hasn’t ended there. Another media story came from LFPress, and Sophia’s story even made the front page of the Toronto Star! In addition, numerous tweets have been posted with or without the hashtag, and above I have reproduced 3 (but there are so many more that you really need to look for yourself). I also posted about this on my Facebook Page, and the story was shared by others there. The comments from this one really says it all!

I mentioned non-entomologists. Here is an open letter to Sophia (called Beatrix in the letter because the author didn’t know her name at the time) from a science communicator.bug-chicks

On the one hand this is a story about a little girl who has big dreams. On the other hand it is a story about the future of women in STEM. Sophia has dreams about becoming a scientist, but both she and her mother are uncertain of what possibilities are out there. Many other young children are in the same boat, I’m sure. But the journey starts at home with parents encouraging children to believe that they can be or do whatever they set their minds to. Last Friday I listened to a CBC Radio show with Maria Issa, a Canadian scientist who started in life just like Sophia by daydreaming and watching lady bugs. In spite of the odds being stacked high against her success, she made it, but many are discouraged, which later affects their self-confidence. My experience is that there is no gender difference in ability – in fact women mature sooner and are more focused than men IMHO. And the increasing number of brilliant female scientists in entomology is a case in point. Luckily for Sophia, she has an encouraging mother. Whether or not she becomes an entomologist is not the point. The point is that she believes in the possibility.

llavanerasFor me, Sophia’s story is a wonderful, multifaceted teachable moment. With all her new friends, Sophia will do just fine. I wish her all the luck in the world.

whiffin

, , , , , , ,

ESC Blog Classifieds – 2 Post-docs @ University of Alberta (Chemical Ecology & Ecophysiology)

Seeking Two Postdoctoral Fellows in Tree Responses to Insect Herbivores and Drought

Area of Research: Chemical Ecology & Ecophysiology

Location: Department of Renewable Resources, University of Alberta, Edmonton (Alberta, Canada)

Description of positions: The interdisciplinary project goal is to characterize the contributions that metabolomics and genomics-assisted tree breeding can play in comprehensive forest planning. Postdoctoral fellows (PDFs) sought for this project to assess the activities of tree defense and ecophysiological responses to insect herbivory and drought. The PDFs will characterize the secondary compounds, anatomy, and ecophysiology of two conifer species (lodgepole pine and white spruce) in response to insect herbivory and drought treatments in both greenhouse trials and associated progeny field trials in Alberta. The PDFs will be responsible for conducting and coordinating both lab and field investigations that include anatomical and chemical characterization of tree defenses, assessment of 13C, gas exchange, and chlorophyll fluorescence plant drought response, implementation of greenhouse and field experiments, data management, statistical analyses, writing reports and peer-reviewed journal manuscripts, and interact with industrial and government partners. The PDFs will also assist with supervision of full and part-time research assistants and undergraduate students. Even though each PDF will have his/her own research projects, it is expected that they work and collaborate together.

Salary: $50,000+ benefits per year, commensurate with experience.

Required qualifications: PhD in a relevant field is required. The ideal candidate should have background and experience in chemical ecology, ecophysiology, entomology, forest ecology, with strong analytical chemistry of plant secondary compounds (primarily terpenes and phenolics) using GC-MS and LC-MS, and writing skills. Suitable applicants with a primary background in one or more areas, plus interest in other research areas, are encouraged to apply.

Application instructions: All individuals interested in these positions must submit: (1) an updated CV; and (2) a cover letter explaining their qualities, including a list of 3 references along with their contact information (a maximum of 2 pages). Applications should be sent by email to Nadir Erbilgin (erbilgin@aulberta.ca) and Barb Thomas (bthomas@ualberta.ca) by the closing date. Please list “PDF application in Tree Responses to Insect Herbivores and Drought” in the subject heading.

Closing date: November 30, 2016.

Supervisors: Nadir Erbilgin (https://sites.ualberta.ca/~erbilgin/) and Barb Thomas (http://www.rr.ualberta.ca/StaffProfiles/AcademicStaff/Thomas.aspx)

Expected start date: January 2017 (with some flexibility)

Terms: 1-4 years (1st year initial appointment, with additional years subject to satisfactory performance).

, , , , ,

Appreciating insects and other arthropods: a lifetime of riches

 

IMG_4978

It is about time I got busy and stared blogging again on this site. Since I am out of practice, I will do what I know best: a photo essay about why I love insects and other arthropods, and how studying them has improved my life!

IMG_4802

Ever since I was a young kid, I have loved getting out and seeing the animals nearby. When I was very young, my mom would send me in the backyard with a spoon and a yogurt container, so I could dig up, catch and watch the bugs I found. 

IMG_4767

In school, virtually all of my research reports and essays would be about insects, spiders, snakes and other animals. My love of insects became my pathway to learning.

IMG_4693

In university, I continued to indulge my love of insects and other animals, by taking any and all zoological courses offered. 

IMG_3971

Even when not studying, almost all the free time I get is spent outdoors, still looking for and watching insects, spiders and other animals. I really enjoy doing photography of what I find. 

IMG_4666

Taking photos of insects is a great way to explore their beauty, and to try to communicate that to others. In the pursuit of a good photograph, I learn a lot about the habits of local insects. 

IMG_4968

Now, I make a living studying animal behaviour. At the moment I am working with Catherine Scott studying spider behaviour at a local beach in Victoria BC. 

IMG_7038

We are studying black widows, one of the most beautiful and intriguing spiders. Of course I bring my camera along, to document the cool things we are learning about their behaviour!

IMG_6519

Studying insects and spiders is not only my job, it is what I most love to do. There is just so much to learn and explore. I think that getting out and experiencing the natural world this way is one of the most rewarding things someone of any age can do!

IMG_6937

Organizations like the Entomological Society of Canada, as well as the Entomological Society of Ontario, and the Toronto Entomologist’s Association form a community of people I can talk to and share my discoveries with. I highly recommend getting together with other insect lovers! Trading ideas and anecdotes and learning more together are some ways we can improve knowledge of insects and other arthropods.  

IMG_6974

OK! I have said my piece. I would welcome any other ESC members, or other entomologists out there to do likewise! What have you been doing this summer? What are some of the cool things you have seen? Share them with us here at the ESC blog!

 

 

, , , , , ,

ESC Blog Classifieds – MSc opportunity for prairie ecosystem research

 MSc – Role of dung-breeding insects in pasture ecosystems

Applications are invited for an MSc position to begin January or May of 2017.  Research will examine the role of dung-breeding insects in pasture ecosystems in southern Alberta.  This is a collaborative project between Agriculture & Agri-Food Canada (AAFC) and the University of Lethbridge (U. of L.), both based in Lethbridge, Alberta.

The project will include insect surveys using dung-baited pitfall traps from May through September on native pastures in southern Alberta, Canada. The role of dung insect activity will be assessed for effects on dung degradation, soil nutrients and micro-fauna, and greenhouse gas emissions.  Dung beetles will be examined as potential vectors of parasites affecting livestock.

The ideal applicant will have recently completed an undergraduate degree in biology or related program with courses in entomology and ecology.  They will be enthusiastic, innovative, and have excellent communication skills (written, oral) in English.  They must be able to work independently and as part of a team.  They must have a valid driver’s license and meet the scholastic qualifications required for acceptance into Graduate Studies at the U. of L.

The successful applicant will be jointly supervised by Drs. Kevin Floate (AAFC) and Cam Goater (U. of L.).  Under the supervision of Dr. Floate, the student will be based at the Lethbridge Research and Development Centre (AAFC), where they will perform the main body of their research.  The Floate lab studies diverse aspects of insect community ecology with particular emphasis on prairie ecosystems (https://sites.google.com/site/dungins/homepage). Under the supervision of Dr. Goater, the student will be enrolled in an MSc program in the Department of Biological Sciences at the University of Lethbridge.  Research in the dynamic Goater lab focuses on the ecology and evolution of host/parasite interactions, and on prairie biodiversity and conservation (http://scholar.ulethbridge.ca/cpg/home).

Informal communication with Dr. Floate prior to application is encouraged.  To apply, please send a cover letter detailing your fit to the position, a CV, a copy of your most recent transcripts, and the names and contact details of three referees to Dr. Kevin Floate (Kevin.Floate@agr.gc.ca).  The deadline for application is November 1, 2016.

, , , ,

The Canadian Entomologist — Call for Special Issues

The Canadian Entomologist (TCE) regularly publishes special issues of manuscripts with a common theme that review or report significant findings of fundamental and (or) general entomological interest.

Submissions currently are being solicited for two upcoming special issues. The first of these will be published in 2017 to celebrate the 40th anniversary of the Biological Survey of Canada (http://biologicalsurvey.ca/). It will be on the theme of “Terrestrial Arthropod Diversity in Canada: Celebrating 40 years of the Biological Survey of Canada”. In this context, “terrestrial” is defined to include upland, wetland and aquatic systems. If you wish to contribute to this special issue, please contact Dr. David Langor (david.langor@canada.ca) by October 1st, 2016.

The second special issue will be published in 2018 to celebrate TCE’s 150th anniversary. It will include manuscripts that each will provide a historical overview on a different aspect of entomological research in Canada. The first six submissions accepted for publication will be given free access on TCE’s website. If you wish to contribute to this second special issue, please contact Dr. Kevin Floate (Kevin.Floate@agr.gc.ca) by December 1st, 2016.

Proposals for special issues can be submitted at any time to TCE’s Editor-in-Chief. Proposals will be reviewed for suitability by the Publications Committee of the Entomological Society of Canada. Manuscripts submitted as part of a special issue are subject to the regular peer review process. There are no page charges.

For more information on The Canadian Entomologist, please visit the journal’s website at:

http://journals.cambridge.org/action/displayJournal?jid=TCE

 

Kevin Floate, Editor-in-Chief

The Canadian Entomologist

, , ,

Canadian Entomology Research Roundup: September 2015 – January 2016

(version française)

As part of a continuing series of Canadian Entomology Research Roundups, here’s what some Canadian entomology grad students have been up to lately:

From the authors:

Finn Hamilton (University of Victoria)

It is now well known that the majority of insects host symbiotic bacteria that have profound consequences for host biology. In some cases, these symbioses can protect hosts against virulent parasites and pathogens, although in most cases it remains unclear how symbionts achieve this defense. In this paper, we show that a strain of the bacterium Spiroplasma that protects its Drosophila host against a virulent nematode parasite encodes a protein toxin. This toxin appears to attack the nematode host during Spiroplasma-mediated defense, representing one of the clearest demonstrations to date of mechanisms underpinning insect defensive symbiosis. Article link

Drosophila

This is a Drosophila falleni fly infected by the nematode, Howardula aoronymphium, which Spiroplasma protects against. Photo credit: Finn Hamilton.

Lucas Roscoe (University of Toronto)

The Emerald Ash Borer (Agrilus planipennis Fairmaire, EAB) is a buprestid pest of ash trees in North America. As part of the development of long-term management plans for EAB, several projects detailing the biology and ecology of poorly-known, yet indigenous parasitoids associated with EAB were initiated. One project concerned the mating sequences of the chalcidid parasitoid, Phasgonophora sulcata Westwood. Many insects undertake repeatable actions prior to mating. These are commonly mediated by pheromones. The results of this research were the description of the mating sequence of P. sulcata, and evidence of female-produced pheromones that initiate these actions. Article link

sulcata

Phasgonophora sulcata, an important parasitoid of the emerald ash borer. Photo credit: Lucas Roscoe.

Marla Schwarzfeld (University of Alberta)

The parasitic wasp genus Ophion (Hymenoptera: Ichneumonidae) is almost entirely unknown in the Nearctic region, with the vast majority of species undescribed. In this study, we published the first molecular phylogeny of the genus, based on COI, ITS2, and 28S gene regions. While focusing on Nearctic specimens, we also included representatives of most known species from the western Palearctic region and several sequences from other geographical regions. We delimited 13 species groups, most recognized for the first time in this study. This phylogeny will provide an essential framework that will hopefully inspire taxonomists to divide and conquer (and describe!) new species in this morphologically challenging genus. Article link

Ophion

A parasitoid wasp in the genus Ophion. Photo credit: Andrea Jackson

Seung-Il Lee (University of Alberta)

Seung-Il Lee and his colleagues (University of Alberta) found that large retention patches (> 3.33 ha) minimize negative edge effects on saproxylic beetle assemblages in boreal white spruce stands. Article link    Blog post

beetle

A saproxylic beetle, Peltis fraterna. Photo credit: Seung-Il Lee.

Paul Abram (Université de Montréal)

The relationship between insect body size and life history traits (e.g. longevity, fecundity) has been extensively studied, but the additional effect of body size on behavioural traits is less well known. Using the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and three of its stink bug host species as a model system, we showed that body size differences were associated with a change in a suite of not only life history parameters (longevity, egg load, egg size), but also several behavioural traits (walking speed, oviposition rate, host marking speed). Our results highlight how the entire phenotype (behaviour and life history) has to be considered when assessing associations between body size and fitness. Article link

Telenomus

The parasitoid Telenomus podisi parasitizing eggs of the stink bug Podisus maculiventris. Photo credit: Leslie Abram.

Delyle Polet (University of Alberta)

Insect wings often have directional roughness elements- like hairs and scales- that shed water droplets along the grain, but why are these elements not always pointing in the same direction? We proposed that three strategies are at play. Droplets should be (1) shed away from the body, (2) shed as quickly as possible and (3) forced out of “valleys” formed between wing veins. A mathematical model combining these three strategies fits the orientation of hairs on a March fly wing (Penthetria heteroptera) quite well, and could readily be applied to other species or bioinspired materials. Article link

Winghairs

Hairs on a March fly (Penthetria heteroptera) wing. Photo credit: Delyle Polet.

In-brief research summaries

Taxonomy, Systematics, and Morphology

Thomas Onuferko from the Packer Lab at York University and colleagues carried out an extensive survey of bee species in Niagara Region, Ontario. Onuferko et al. collected over 50 000 bees and discovered 30 species previously not recorded in the area. Article link

Christine Barrie and colleague report the Chloropidae flies associated with common reed (Phragmites) in Canada. Article link

 Behaviour and Ecology 

Blake Anderson (McMaster University) and colleagues investigates the decoupling hypothesis of social behaviour and activity in larval and adult fruit flies. Article link

Susan Anthony from the Sinclair Lab at Western University, along with Chris Buddle (McGill University), determined the Beringian pseudoscorpion can tolerate of both cold temperatures and immersion. Article link

A study by Fanny Maure (Université de Montréal) shows that the nutritional status of a host, the spotted lady beetle (Coleomegilla maculata), influences host fate and parasitoid fitness. Article link

Is connectivity the key? From the Buddle and Bennett Labs at McGill University and the James Lab at (Université de Montréal), Dorothy Maguire (McGill University) and colleagues use landscape connectivity and insect herbivory to propose a framework that examines that tradeoffs associated with ecosystem services. Article link

 Alvaro Fuentealba (Université Laval) and colleague discovered that different host tree species show varying natural resistance to spruce budworm. Article link

Insect and Pest Management

Rachel Rix (Dalhousie University) et al. observed that mild insecticide stress can increase reproduction and help aphids better cope with subsequent stress. Article link

Lindsey Goudis (University of Guelph) and others found that the best way to control western bean cutworm is to apply lambda-cyhalothrin and chlorantraniliprole 4 to 18 day after 50 % egg hatch. Article link

Matthew Nunn (Acadia University) and colleague document the diversity and densities of important pest species of wild blueberries in Nova Scotia. Article link

Physiology and Genetics

Does heterozygosity improve symmetry in the Chilean bee, Xeromelissa rozeni? Margarita Miklasevskaja (York University) and colleague tested this hypothesis in their recent paper. Article link

Xeromelissa

A Chilean male Xeromelissa rozeni. Photo credit: Margarita Miklasevskaja.

Recent University of Alberta graduate Jasmine Janes and others explored the mating systems and fine-scale spatial genetic structure for effective management of mountain pine beetle. Article link

Also from the Sperling Lab at the University of Alberta, Julian Dupuis and Felix Sperling examined the complex interaction of hybridization and speciation. They characterized potential hybridization in a species group of swallowtail butterflies. Article link

Marina Defferrari (University of Toronto) and colleagues identified new insulin-like peptides in Rhodnius prolixus and that these peptides are involved in the metabolic homeostasis of lipids and carbohydrates. Article link

Techniques

Crystal Ernst (McGill University) and colleague sampled beetles and spiders in different northern habitats. They found that the diversity of beetles and spiders are affected by habitat and trap type. Article link

 


We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com. You can also send us photos and short descriptions of your research, to appear in a later edition of the research roundup.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

, , , , ,

Rassemblement de la recherche entomologique canadienne: Septembre 2015 – Janvier 2016

(English version here)

Cet article fait partie d’une série continue de rassemblement de la recherche entomologique canadienne (Canadian Entomology Research Roundups). Voici ce que les étudiants de cycle supérieur canadiens ont fait récemment:

De la part des auteurs:

Finn Hamilton (University of Victoria)

C’est bien connu que la majorité des insectes sont hôtes à des bactéries symbiotiques qui ont de profondes conséquences sur la biologie de l’hôte. Dans certains cas, ces symbioses peuvent protéger l’hôte contre de virulents parasites et pathogens, même si dans la plupart des cas planent encore un mystère sur la façon dont les symbionts réussissent à atteindre cette défense. Dans cet article, nous avons démontré qu’une souche de la bactérie Spiroplasma qui protège son hôte drosophile contre un nématode parasitaire virulent encode une toxine sous forme de protéine. Cette toxine semble attaquer l’hôte du nématode durant une défense induite par Spiroplasma. Ceci représente, à ce jour, une des démonstrations les plus claires des mécanismes sous-jacents de la symbiose promouvant la défense des insectes. Lien vers l’article

Drosophila

Voici une mouche Drosophila falleni infecté par le nematode, Howardula aoronymphium, dont Spiroplasma  la protège. Crédit phot: Finn Hamilton.

Lucas Roscoe (University of Toronto)

L’agrile du frêne (Agrilus planipennis Fairmaire) est un buprestide ravageur s’attaquant aux frênes d’Amérique du Nord. Dans l’optique du développement de plans de gestion à long-terme de l’agrile du frêne, plusieurs projets détaillant la biologie et l’écologie de parasitoïdes indigènes peu étudiés auparavant ont été amorcés. Un des projets s’intéresse à la séquence de reproduction d’un parasitoïde, Phasgonophora sulcata Westwood. Plusieurs insectes entreprennent des actions répétées avant la reproduction qui sont souvent induites par des phéromones. Les résultats de cette étude sont la description de la séquence de reproduction de P. sulcata et la preuve que les phéromones produites par les femelles sont à la base de ses actions. Liens vers l’article

sulcata

Phasgonophora sulcata, un parasitoïde important de l’agrile du frêne. Crédit photo: Lucas Roscoe.

Marla Schwarzfeld (University of Alberta)

Les guêpes parasitiques du genre Ophion (Hymenoptera: Ichneumonidae) sont presqu’entièrement inconnu dans la région Néarctique, où la majorité des espèces ne sont pas décrites. Dans cette étude, nous publions la première phylogénie moléculaire de ce genre, basé sur les régions COI, ITS2, and 28S. Bien que nous mettions l’accent sur les spécimens Néarctique, nous avons aussi inclus des représentants des espèces les plus connus de de l’ouest de la région Paléarctique et plusieurs séquences d’autre régions géographiques. Nous avons délimités 13 groupes d’espèces, la plupart étant reconnu pour la première fois dans cette étude. Cette phylogénie nous fournit un cadre essentiel qui pourra, nous espérons, inspirer les taxonomistes à divisier et conquérir (et décrire!) de nouvelles espèces dans ce genre qui présente de grands défis morphologiques. Liens vers l’article

Ophion

A parasitoid wasp in the genus Ophion. Photo credit: Andrea Jackson

Seung-Il Lee (University of Alberta)

Seung-Il Lee et ses collègues (University of Alberta) ont trouvé que de larges territoires de rétention (> 3.33 ha) minimisent “l’effet de bordure” négatif sur les coléoptères saproxyliques dans les peuplements boréals d’épinette blanche. Liens vers l’article  Billet de blogue (EN)

beetle

Un coléoptère saproxylique, Peltis fraterna. Crédit photo: Seung-Il Lee.

Paul Abram (Université de Montréal)

La relation entre la taille des insectes et certains traits distinctifs (tel que la longévité, la fécondité, …) a été largement étudié, mais l’effet additionnel de la taille sur les traits comportementales sont moins bien connus. En utilisant le parasitoïde d’oeuf  Telenomus podisi Ashmead (Hymenoptera: Platygastridae) et trois de ses hôtes punaises comme système modèle, nous avons démontrés que la différence de taille était associé a un changement dans la plusieurs traits distinctifs (longévité, masse d’oeufs, taille des oeufs), mais aussi de certains traits comportementales (vitesse de marche, taux d’oviposition, taux de marquage des oeufs). Nos résultats mettent en relief comment la phénotype complet (comportement et traits distinctifs) doivent être considéré quand nous évaluons l’association entre la taille et la condition physique. Liens vers l’article

Telenomus

Le parasitoïde Telenomus podisi parasitisant les oeufs de la punaise Podisus maculiventris. Crédit photo: Leslie Abram.

Delyle Polet (University of Alberta)

Les ailes de insectes ont souvent des éléments directionnels rugueux – comme des poils et des écailles- qui perdent des gouttes d’eau dans le sens des éléments, mais pourquoi ces éléments ne pointent pas toujours dans la même direction? Nous avons proposé que trois stratégies sont en jeu. Les gouttes pourrait être (1) évacuer loin du corps, (2) être perdues aussi vite que possible et (3) évacuer de “vallées” formés entre les veines des ailes. Un modèle mathématique combinant trois de ces stratégies concorde avec l’orientation des poils sur un taon (Penthetria heteroptera) assez bien et pourrait être appliqué à d’autres espèces ou à des matériaux inspirés par la biologie. Liens vers l’article

Winghairs

Poils sur l’aile d’un taon (Penthetria heteroptera). Crédit photo: Delyle Polet.

Résumés bref de recherche

Taxonomie, Systématique, and Morphologie

Thomas Onuferko du laboratoire Packer à York University et ses collègues ont réalisé un vaste étude sur les espèces d’abeilles dans la région de Niagara, Ontario. Onuferko et al. ont collecté plus de 50 000 abeilles et ont découvert 30 espèces qui n’avait pas été rapporté dans la région. Liens vers l’article

Christine Barrie et ses collègues ont signalé que des mouches de la famille Chloropidae sont associés aux phragmites au Canada. Lien vers l’article

Comportment et écologie

Blake Anderson (McMaster University) et ses collègues ont étudié l’hypothèse du découplage du comportement social et de l’activité dans les mouches larvaires et adultes. Lien vers l’article

Susan Anthony du laboratoire Sinclair à Western University, ainsi que Chris Buddle (McGill University), ont déterminé que le pseudoscorpion de Béringie peut tolérer tant les basses températures et l’immersion. Lien vers l’article

Une étude par Fanny Maure (Université de Montréal) démontre que le status nutritionnel d’un hôte, la coccinelle maculée (Coleomegilla maculata), influence le destin de l’hôte et condition physique du parasitoïde. Lien vers l’article

Est-ce que la connectivité est la clé? Des laboratoires Buddles et Bennet à l’Université McGill et du laboratoire James à l’Université de Montréal, Dorothy Maguire (Université McGill) et ses collègues ont utilisé la connectivité du paysage et les insectes herbivores pour proposer un cadre pour examiner les compromis associés aux services ecosystèmiques. Lien vers l’article

 Alvaro Fuentealba (Université Laval) et ses collègues ont découvert que différentes espèces d’arbres hôtes montrent des variations à la résistance naturelle à la tordeuse du bourgeon de l’épinette. Lien vers l’article

Gestion des insectes ravageurs

Rachel Rix (Dalhousie University) et al. ont observé qu’un stress modéré induit par l’insecticide pour augmenter la reproduction et aider les pucerons a mieux se débrouiller avec le stress subséquent. Lien vers l’article

Lindsey Goudis (University of Guelph) et ses collègues ont découvert que la meilleure façon de contrôler Striacosta albicota (Smith) est d’appliquer de la lamba-cyhalothrine de la chlorantraniprole 4 à 18 jours après l’éclosion de 50% des oeufs. Lien vers l’article

Matthew Nunn (Acadia University) et ses collègues ont documenté la diversité et densité d’importantes espèces ravageuses des bleuets sauvages en Nouvelle-Écosse. Lien vers l’article

Physiologie et génétique

Est-ce que l’heterozygositie améliore la symétrie de Xeromelissa rozeni?  Margarita Miklasevskaja (York University) et ses collègues ont testé cette hypothèse dans leur plus récent article. Lien vers l’article

Xeromelissa

Un male Xeromelissa rozeni. Crédit photo: Margarita Miklasevskaja.

Jasmine Janes, récemment graduée de University of Alberta, et d’autres ont exploré les systèmes de reproduction et de structure génétique à petite échelle pour la gestion efficace du Dendroctone du pin ponderosa. Lien vers l’article

Du laboratoire Sperling à University of Alberta, Julian Dupuis et Felix Sperling ont examiné l’interaction complexe de l’hybridation et de la spéciation. Ils ont caractérisé le potentiel d’hybridation dans un groupe de Papilonidae. Lien vers l’article

Marina Defferrari (University of Toronto) et ses collègues ont identifié un nouveau peptide similair à l’insuline dans Rhodnius prolixus. Ses peptides sont impliqués dans l’homéostasie métaboliques des lipides et carbohydrates. Lien vers l’article

Techniques

Crystal Ernst (McGill University) et ses collègues ont collecté des coléoptères et des araignées dans différents habitats du Nord. Ils ont trouvé que la diversité des coléoptères et des araignées par habitat et type de trappes. Lien vers l’article


Nous continuous à aider à divulguer les publications des étudiants de cycle supérieur à la plus vaste communauté entomologique grâce aux rassemblement de recherche. Si vous avez publié un article récemment et souhaitez le divulguer, envoyez-nous un email à entsoccan.students@gmail.com.  Vous pouvez aussi nous envoyer des photos et une courte description de votre recherche dans le but apparaître dans notre prochain rassemblement de recherche.

Pour des mises à jour régulières sur la nouvelle recherche entomologique canadienne, vous pouvez joindre la page Facebook de ESC Students ou nous suivre sur Twitter @esc_students (EN) ou @esc_students_fr (FR).

, ,

Are you feeling lucky today? Is it possible to improve your “luck” in academia?

BSL and Jeanne convocation05

Staffan with Graduate student Jeanne Robert, 2005. Jeanne went on to do a PhD at UBC, then came back to UNBC, where she worked as a post-doctoral fellow and then a Research coordinator for the UNBC NRESi Biodiversity Monitoring & Assessment Program. She is now the Regional Entomologist, Northern Region, for the BC Ministry of Forest, Lands and Natural Resources Operations, Prince George, BC. I was lucky to have a great graduate student. Was she lucky? Only through hard work!

 

The following is a guest post by Staffan Lindgren

When I was about 10 years old I won a competition in a hobby magazine, which landed me a nice race car track. Since then I have not won anything, really. Yet, I consider myself a lucky person, not only because of a great family life, but because opportunities have always seemed to pop up just when I needed them.  But looking back, I would say that my luck was in large part self-made. Over the years, I had made sure I had summer and temporary jobs that gave me appropriate experience, e.g., as a substitute teacher, forest regeneration surveyor, etc.

When I was doing my undergraduate degree in Sweden, the course offerings in the fall of 1973 were not to my liking, so I landed a job as a research assistant to a PhD student studying spiders. But the reason I did, was that I had a longstanding interest in spiders, so I had connected with the student long before that. For example, as a 12-year-old, I wrote to Professor Åke Holm, Uppsala University, after reading a newspaper article posted on a board in my English teachers classroom. Dr. Holm was then Sweden’s pre-eminent spider taxonomist, and had published my first spider book (Holm 1947). His kindness and encouragement has served as a model for me throughout my career. After I graduated with my undergraduate degree, I made a misguided attempt at a PhD  in medical endocrinology, studying testosterone secretion in rats. Apart from five small publications (Carstensen et al. 1976, Lindgren et al. 1976, Damber et al. 1977a, Damber et al. 1977b, Bergh et al. 1982), I came away with a bruised ego and a severe allergy to rats.

After my failed 2-year forage into mammal reproductive physiology, I realized that I needed to re-focus on my first love, which was entomology. The first thing I did was to contact (by which I mean that I wrote a letter ) Dr. Bertil Lekander, professor of forest entomology at the Royal College of Forestry, Stockholm, Sweden. He offered to take me on as a special interest student in the two forest entomology courses offered to future foresters. To make a long story short, this led to a life-long association, albeit informal, with Swedish forest entomologists. For example, I published my Master of Pest Management Professional Paper as a Forest Entomology report (which also has a long story associated with it, the main lesson of which is the old adage “It’s not what you say, but how you say it”), and I had the privilege of spending 6 months as a visiting scientist at SLU in Uppsala in 1993 thanks to the connections I made there. Nevertheless, a few courses did not lead to a specific job, so once that was done I was once again without a firm direction in life. Because I had made many friends and connections in the Department  of Ecological Zoology at Umeå University, in part through the spider job, but also through volunteering every spring and fall on an annual 4-day microtine rodent survey (Hörnfeldt et al. 1986) I got wind of a 4-month Teaching Assistant position in the Department of Health and Environment, which I was offered (notably in competition with another future entomologist, Anders N. Nilsson, who became a world authority on aquatic beetles). This position involved leading a class trip to the Soviet Union, among other things.

IMGP1274

Staffan with a nice rainbow trout from Wicheeda Lake, north of Prince George. Now this may have been luck, because I don’t work hard at my fishing skill!

At the end of that position, I had started the proceedings to go to Canada, which ultimately led me to where I am today. Again, this was not something that happened by accident. In 1968-69, I spent a year in central Michigan as a high school exchange student. This was an extremely formative experience for me. It made me confident that I could succeed in an English-speaking environment, and it shaped me politically (it was the height of the Vietnam War, two political assassinations , Martin Luther King, Jr. and Robert F. Kennedy, Jr., had happened earlier in 1968), and there were significant racial tensions throughout the US. Anyway, I had become convinced that applied science was the only worthwhile pursuit in terms of education (see my earlier post here), and had found the Centre for Overseas Pest Research, a British organization. (Remember that there was no Google or internet, so all of this was done through libraries and by asking for information by mail). I received a letter back that they could only offer employment to “British subjects”, but they passed on a brochure about the Master of Pest Management program at Simon Fraser University. This seemed like the ticket to my future, so I wrote to SFU. The response was positive, so I decided to apply. But I needed funding. Fortunately for me, I managed to land a fellowship from the Sweden-America Foundation, and in combination with the relatively generous student loans from the Swedish Government, I all of a sudden found myself in a position to go to Canada! And the rest is history, as they say!

What does this history of my formative years have to do with luck? I truly believe that some people have more luck than others. When you buy a lottery ticket, the odds are fixed.  But in the job market, including academia, you can change the odds in your favour, at least to some degree. The points I take home from the experience I have accumulated over my career are:

  1. If people know you, they will pass on information that may lead to your big break.
  2. Treat people with respect, i.e., treat them the way you wish to be treated. If you are well liked and respected, it will make a difference when you are looking for references or recommendations. This is particularly important when dealing with workers. I found that by showing an interest in, and respect for, their experience and knowledge rather than acting superior, you gain their trust and respect, and they will welcome your opinion.
  3. Don’t hesitate to seek help or advice from professors, no matter how eminent or important they are. In entomology in particular, I have been amazed at the kindness and generosity I have encountered from people really had nothing to gain by responding or talking to me. The worst that can happen is that you don’t get a response, or one that makes you steer clear of that individual (which has yet to happen to me).
  4. We all have weaknesses. Work on them. I used to shake like a leaf when having to address an audience. Some of the best scientists and public speakers I know suffer from extreme nervousness, but they have learned to cope with it. If you suffer from nerve problems, seek help, or at least give yourself experience. There are tricks to help you, and you’d be amazed how experience helps!
  5. Never, ever pretend you know something you don’t. Honesty always pays off in my experience.
  6. Finally, and most importantly, follow your heart. If you are passionate about what you do, you are more likely (and able) to build experience, which in turn becomes as important, or more so, in a job interview.

These are some ways to “make you lucky”. Just like an athlete has to put time and effort into achieving their goals, we do as well.

Best of luck!

References

Bergh, A., J.-E. Damber, and S. Lindgren.  1982.  Compensatory hypertrophy of the Leydig cells in hemiorchidectomized adult rats.  Experientia 38:597-598.

Carstensen, H., S. Marklund, J.-E. Damber, B. Näsman, and S. Lindgren.  1976.  No effect of oxygen in vivo on plasma or testis testosterone in rats and no induction of superoxide dismutase.  Journal of Steroid Biochemistry 7:465-467.

Damber, J.-E., H. Carstensen, and S. Lindgren. 1977a. The effects of barbiturate anesthesia and laparotomy on testis and plasma testosterone in rats. J. Ster. Biochem. 8: 217-219.

Damber, J.-E., S. Lindgren, and B. Näsman.  1977b.  Testicular blood flow and oxygen tension in unilaterally orchidectomized rats.  Experientia 33:635.

Holm, Å. 1947. Svensk spindelfauna. 3, Egentliga spindlar. Araneae Fam. 8-10, Oxyopidae, Lycosidae och Pisauridae. Entomologiska Föreningen, Stockholm, Sweden.

Hörnfeldt, B., O. Löfgren, B.-G. Carlsson. 1986. Cycles in voles and small game in relation to variations in plant production indices in Northern Sweden. Oecologia (Berlin) 68:496–502

Lindgren, S., J.-E. Damber, and H. Carstensen.  1976.  Compensatory testosterone secretion in unilaterally orchidectomized rats.  Life Science 18:1203-1205.

 

 

, , ,

The sand-verbena moth

SV1

Figure 1 The sand-verbena moth (Photo: Wendy Gibble, Used under a CreativeCommons CC_BY 2.0 licence)

By Lisa Jørgensen

The sand-verbena moth (Copablepharon fuscum) is, when it comes to looks, a relatively anonymous fellow.  This nocturnal moth, which belongs to the order Lepidoptera (butterflies and moths) and the family Noctuidae, has a wingspan of 3.5-4.0 cm and has only been found in three Canadian sites, all on the coast of southwestern British Columbia, and in a few sites in the northwestern coastal part of Washington, USA.

The moth is heavily dependent on the presence of yellow sand-verbena, as this plant is the only host that it uses for egg laying, and later for the emerging larvae and adult to feed on. The yellow sand-verbena demands sandy, nutrient poor conditions, and though it is present in areas where other plants are dominating, it will only flower at sites where it is the dominant species. The moth has been found to require large patches of yellow sand-verbena to sustain a population, but such patches are difficult to come across because of the habitat requirements of the plant.

sv2

Figure 2 Preferred habitat of yellow sand-verbena, here Long Beach Peninsula, WA, US (Photo: Wendy Gibble), Used under a CreativeCommons CC_BY 2.0 licence)

This pickiness in the moth’s choice of host plant is the most probable reason that the sand-verbena moth is considered an endangered species under the SARA (Species at Risk Act), which is the official list of Canadian wildlife at risk. The label ‘endangered’ is put on species that are in risk of extirpation or extinction, meaning that the present populations of an ‘endangered’ species are the last in the wild. We do not know how many individuals of this moth species is left, but we do know that due to plant invasion, the number of sandy patches with yellow sand-verbena is decreasing, as other plants colonize the same habitat, thus keeping down numbers of yellow sand-verbena and keeping them from flowering. When the number or size of available habitats is lowered, the moth populations will naturally experience a decrease. Another reason for the loss of habitat is the proximity of the sandy patches to the shoreline that makes the patches at risk of suffering of erosion or flooding, and the use of dunes for military training that expose the plants to the risk of being trampled down. A more direct threat to the moth than the threat of habitat loss, is the spraying of Btk (Bacillus thuringiensis kurstaki) against the larvae of pest moths, or parasitic flies introduced (i.e. not from the “hood”) for the same cause.

But why should we care about this specific endangered species? It does not play any crucial part in the pollination of yellow sand-verbena, nor is it particularly important in the local food web or to the economy, so what would happen if it we took the laissez-faire approach and did nothing to help this species? It would probably disappear from some patches, and ultimately go extinct, as it has shown poor ability into dispersal on its own. But we can do something, and it may not even cost us a lot of money (that’s a good argument, eh?)! Approaches to help recovery the Canadian populations of sand-verbena moth include the protection of patches dominated by yellow sand-verbena by physically protecting the plants from erosion and trampling by training soldiers, by fencing the area (however temporarily), and the movement of yellow sand-verbena from patches where it has a low abundance (and so no sand-verbena moth population) to patches that are in risk of being dominated by other plants (with a moth population). Also, public outreach to the areas with populations of sand-verbena moth has been initiated, and the existing populations are being monitored. The Ministry of Environment of British Columbia considers the recovery goal of the sand-verbena moth, to maintain the populations at the current locations, to be feasible.

 

 

 

 

 

Sources:

SARA (Government of Canada): https://www.registrelep-sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=789 25/11 2015

British Columbia Invertebrates Recovery Team. 2008. Recovery strategy for Sand-verbena Moth (Copablepharon fuscum) in British Columbia. Prepared for the B.C. Ministry of Environment, Victoria, BC. 18 pp.